19 research outputs found

    Renormalization flow in extreme value statistics

    Full text link
    The renormalization group transformation for extreme value statistics of independent, identically distributed variables, recently introduced to describe finite size effects, is presented here in terms of a partial differential equation (PDE). This yields a flow in function space and gives rise to the known family of Fisher-Tippett limit distributions as fixed points, together with the universal eigenfunctions around them. The PDE turns out to handle correctly distributions even having discontinuities. Remarkably, the PDE admits exact solutions in terms of eigenfunctions even farther from the fixed points. In particular, such are unstable manifolds emanating from and returning to the Gumbel fixed point, when the running eigenvalue and the perturbation strength parameter obey a pair of coupled ordinary differential equations. Exact renormalization trajectories corresponding to linear combinations of eigenfunctions can also be given, and it is shown that such are all solutions of the PDE. Explicit formulas for some invariant manifolds in the Fr\'echet and Weibull cases are also presented. Finally, the similarity between renormalization flows for extreme value statistics and the central limit problem is stressed, whence follows the equivalence of the formulas for Weibull distributions and the moment generating function of symmetric L\'evy stable distributions.Comment: 21 pages, 9 figures. Several typos and an upload error corrected. Accepted for publication in JSTA

    Maximum relative height of one-dimensional interfaces : from Rayleigh to Airy distribution

    Full text link
    We introduce an alternative definition of the relative height h^\kappa(x) of a one-dimensional fluctuating interface indexed by a continuously varying real paramater 0 \leq \kappa \leq 1. It interpolates between the height relative to the initial value (i.e. in x=0) when \kappa = 0 and the height relative to the spatially averaged height for \kappa = 1. We compute exactly the distribution P^\kappa(h_m,L) of the maximum h_m of these relative heights for systems of finite size L and periodic boundary conditions. One finds that it takes the scaling form P^\kappa(h_m,L) = L^{-1/2} f^\kappa (h_m L^{-1/2}) where the scaling function f^\kappa(x) interpolates between the Rayleigh distribution for \kappa=0 and the Airy distribution for \kappa=1, the latter being the probability distribution of the area under a Brownian excursion over the unit interval. For arbitrary \kappa, one finds that it is related to, albeit different from, the distribution of the area restricted to the interval [0, \kappa] under a Brownian excursion over the unit interval.Comment: 25 pages, 4 figure

    Renormalization group theory for finite-size scaling in extreme statistics

    Full text link
    We present a renormalization group (RG) approach to explain universal features of extreme statistics, applied here to independent, identically distributed variables. The outlines of the theory have been described in a previous Letter, the main result being that finite-size shape corrections to the limit distribution can be obtained from a linearization of the RG transformation near a fixed point, leading to the computation of stable perturbations as eigenfunctions. Here we show details of the RG theory which exhibit remarkable similarities to the RG known in statistical physics. Besides the fixed points explaining universality, and the least stable eigendirections accounting for convergence rates and shape corrections, the similarities include marginally stable perturbations which turn out to be generic for the Fisher-Tippett-Gumbel class. Distribution functions containing unstable perturbations are also considered. We find that, after a transitory divergence, they return to the universal fixed line at the same or at a different point depending on the type of perturbation.Comment: 15 pages, 8 figures, to appear in Phys. Rev.

    Distribution of the time at which N vicious walkers reach their maximal height

    Full text link
    We study the extreme statistics of N non-intersecting Brownian motions (vicious walkers) over a unit time interval in one dimension. Using path-integral techniques we compute exactly the joint distribution of the maximum M and of the time \tau_M at which this maximum is reached. We focus in particular on non-intersecting Brownian bridges ("watermelons without wall") and non-intersecting Brownian excursions ("watermelons with a wall"). We discuss in detail the relationships between such vicious walkers models in watermelons configurations and stochastic growth models in curved geometry on the one hand and the directed polymer in a disordered medium (DPRM) with one free end-point on the other hand. We also check our results using numerical simulations of Dyson's Brownian motion and confront them with numerical simulations of the Polynuclear Growth Model (PNG) and of a model of DPRM on a discrete lattice. Some of the results presented here were announced in a recent letter [J. Rambeau and G. Schehr, Europhys. Lett. 91, 60006 (2010)].Comment: 30 pages, 12 figure

    Extreme value distributions and Renormalization Group

    Get PDF
    In the classical theorems of extreme value theory the limits of suitably rescaled maxima of sequences of independent, identically distributed random variables are studied. So far, only affine rescalings have been considered. We show, however, that more general rescalings are natural and lead to new limit distributions, apart from the Gumbel, Weibull, and Fr\'echet families. The problem is approached using the language of Renormalization Group transformations in the space of probability densities. The limit distributions are fixed points of the transformation and the study of the differential around them allows a local analysis of the domains of attraction and the computation of finite-size corrections.Comment: 16 pages, 5 figures. Final versio

    Finite-size scaling in extreme statistics

    Full text link
    We study the convergence and shape correction to the limit distributions of extreme values due to the finite size (FS) of data sets. A renormalization method is introduced for the case of independent, identically distributed (iid) variables, showing that the iid universality classes are subdivided according to the exponent of the FS convergence, which determines the leading order FS shape correction function as well. We find that, for the correlated systems of subcritical percolation and 1/f^alpha stationary (alpha<1) noise, the iid shape correction compares favorably to simulations. Furthermore, for the strongly correlated regime (alpha>1) of 1/f^alpha noise, the shape correction is obtained in terms of the limit distribution itself.Comment: 4 pages, 3 figure

    Extreme value statistics from the Real Space Renormalization Group: Brownian Motion, Bessel Processes and Continuous Time Random Walks

    Full text link
    We use the Real Space Renormalization Group (RSRG) method to study extreme value statistics for a variety of Brownian motions, free or constrained such as the Brownian bridge, excursion, meander and reflected bridge, recovering some standard results, and extending others. We apply the same method to compute the distribution of extrema of Bessel processes. We briefly show how the continuous time random walk (CTRW) corresponds to a non standard fixed point of the RSRG transformation.Comment: 24 pages, 5 figure

    Universal Order Statistics of Random Walks

    Full text link
    We study analytically the order statistics of a time series generated by the successive positions of a symmetric random walk of n steps with step lengths of finite variance \sigma^2. We show that the statistics of the gap d_{k,n}=M_{k,n} -M_{k+1,n} between the k-th and the (k+1)-th maximum of the time series becomes stationary, i.e, independent of n as n\to \infty and exhibits a rich, universal behavior. The mean stationary gap (in units of \sigma) exhibits a universal algebraic decay for large k, /\sigma\sim 1/\sqrt{2\pi k}, independent of the details of the jump distribution. Moreover, the probability density (pdf) of the stationary gap exhibits scaling, Proba.(d_{k,\infty}=\delta)\simeq (\sqrt{k}/\sigma) P(\delta \sqrt{k}/\sigma), in the scaling regime when \delta\sim \simeq \sigma/\sqrt{2\pi k}. The scaling function P(x) is universal and has an unexpected power law tail, P(x) \sim x^{-4} for large x. For \delta \gg the scaling breaks down and the pdf gets cut-off in a nonuniversal way. Consequently, the moments of the gap exhibit an unusual multi-scaling behavior.Comment: 5 pages, 3 figures. Revised version, typos corrected. Accepted for publication in Physical Review Letter

    Renormalization flow for extreme value statistics of random variables raised to a varying power

    Full text link
    Using a renormalization approach, we study the asymptotic limit distribution of the maximum value in a set of independent and identically distributed random variables raised to a power q(n) that varies monotonically with the sample size n. Under these conditions, a non-standard class of max-stable limit distributions, which mirror the classical ones, emerges. Furthermore a transition mechanism between the classical and the non-standard limit distributions is brought to light. If q(n) grows slower than a characteristic function q*(n), the standard limit distributions are recovered, while if q(n) behaves asymptotically as k.q*(n), non-standard limit distributions emerge.Comment: 21 pages, 1 figure,final version, to appear in Journal of Physics

    Systemic importance of financial institutions: regulations, research, open issues, proposals

    Get PDF
    In the field of risk management, scholars began to bring together the quantitative methodologies with the banking management issues about 30 years ago, with a special focus on market, credit and operational risks. After the systemic effects of banks defaults during the recent financial crisis, and despite a huge amount of literature in the last years concerning the systemic risk, no standard methodologies have been set up to now. Even the new Basel 3 regulation has adopted a heuristic indicator-based approach, quite far from an effective quantitative tool. In this paper, we refer to the different pieces of the puzzle: definition of systemic risk, a set of coherent and useful measures, the computability of these measures, the data set structure. In this challenging field, we aim to build a comprehensive picture of the state of the art, to illustrate the open issues, and to outline some paths for a more successful future research. This work appropriately integrates other useful surveys and it is directed to both academic researchers and practitioners
    corecore