61 research outputs found

    DNA Vaccination by Electrogene Transfer

    Get PDF

    Electrochemotherapy in treatment of canine oral malignant melanoma and factors influencing treatment outcome

    Get PDF
    Oral malignant melanoma is the most common, but aggressive oral cancer in dogs with poor prognosis. Electrochemotherapy (ECT) has therapeutic potential in such tumors as effective local treatment. Therefore, the aim of this prospective clinical study was to evaluate treatment effectiveness of ECT in as first line treatment for canine oral malignant melanoma, and search for factors influencing treatment outcome. Sixty-seven canines with primary oral malignant melanoma, non-candidates for first-line therapy, were enrolled. All dogs received ECT and follow-up exams for the span of two years. Based on RECIST criteria, the objective response rate was 100%, 89.5%, 57.7%, and 36.4%, in stage I, II, III and IV, respectively. Only patients in stage I, II and III with partial or complete response improved their quality of life. The median time to progression was 11, 7, 4 and 4 months, and median survival time after the treatment was 16.5, 9.0, 7.5 and 4.5 months, for patients in stage I, II, III and IV, respectively. Significantly better was local response in stage I and II disease (p = 0.0013), without the bone involvement (p = 0.043) Electrochemotherapy is effective local treatment of oral canine malignant melanoma when no alternative treatment is available. Better response is expected in stage I and II patients with tumors without bone involvement.Fil: Tellado, Matías Nicolás. No especifíca;Fil: Maglietti, Felipe Horacio. Hospital Italiano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Michinski, Sebastián Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; ArgentinaFil: Marshall, Guillermo Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; ArgentinaFil: Signori, Emanuela. Centre National de la Recherche Scientifique; Franci

    Numerical Optimization of Plasmid DNA Delivery Combined with Hyaluronidase Injection for Electroporation Protocol

    Get PDF
    International audienceBackground and Objective: The paper focuses on the numerical strategies to optimize a plasmid DNA delivery protocol, which combines hyaluronidase and electroporation. Methods: A well-defined continuum mechanics model of muscle porosity and advanced numerical optimization strategies have been used, to propose a substantial improvement of a pre-existing experimental protocol of DNA transfer in mice. Our work suggests that a computational model might help in the definition of innovative therapeutic procedures, thanks to the fine tuning of all the involved experimental steps. This approach is particularly interesting in optimizing complex and costly protocols, to make in vivo DNA therapeutic protocols more effective. Results: Our preliminary work suggests that computational model might help in the definition of innovative therapeutic protocol, thanks to the fine tuning of all the involved operations. Conclusions: This approach is particularly interesting in optimizing complex and costly protocols for which the number of degrees of freedom prevents a experimental test of the possible configuration

    Electroporation as the immunotherapy strategy for cancer in veterinary medicine: state of the art in Latin America

    Get PDF
    Electroporation is a technology that increases cell membrane permeability by the application of electric pulses. Electrochemotherapy (ECT), the best-known application of electroporation, is a very effective local treatment for tumors of any histology in human and veterinary medicine. It induces a local yet robust immune response that is responsible for its high effectiveness. Gene electrotransfer (GET), used in research to produce a systemic immune response against cancer, is another electroporation-based treatment that is very appealing for its effectiveness, low cost, and simplicity. In this review, we present the immune effect of electroporation-based treatments and analyze the results of the vast majority of the published papers related to immune response enhancement by gene electrotransfer in companion animals with spontaneous tumors. In addition, we present a brief history of the initial steps and the state of the art of the electroporation-based treatments in Latin America. They have the potential to become an essential form of immunotherapy in the region. This review gives insight into the subject and helps to choose promising research lines for future work; it also helps to select the adequate treatment parameters for performing a successful application of this technology.Fil: Maglietti, Felipe Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Hospital Italiano; ArgentinaFil: Tellado, Matías. Clínica Vetoncologia; ArgentinaFil: De Robertis, Mariangela. Consiglio Nazionale delle Ricerche; Italia. Università degli Studi di Bari; ItaliaFil: Michinski, Sebastián Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; ArgentinaFil: Fernández, Juan. Clínica Vetoncologia; ArgentinaFil: Signori, Emanuela. Consiglio Nazionale Delle Ricerche. Departimento Di Medicina. Instituto Di Farmacología Traslazionale; ItaliaFil: Marshall, Guillermo Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentin

    Genetic Immunization with CDR3-Based Fusion Vaccine Confers Protection and Long-Term Tumor-Free Survival in a Mouse Model of Lymphoma

    Get PDF
    Therapeutic vaccination against idiotype is a promising strategy for immunotherapy of B-cell malignancies. We have previously shown that CDR3-based DNA immunization can induce immune response against lymphoma and explored this strategy to provide protection in a murine B-cell lymphoma model. Here we performed vaccination employing as immunogen a naked DNA fusion product. The DNA vaccine was generated following fusion of a sequence derived from tetanus toxin fragment C to the VHCDR3109−116 epitope. Induction of tumor-specific immunity as well as ability to inhibit growth of the aggressive 38C13 lymphoma and to prolong survival of vaccinated mice has been tested. We determined that DNA fusion vaccine induced immune response, elicited a strong protective antitumor immunity, and ensured almost complete long-term tumor-free survival of vaccinated mice. Our results show that CDR3-based DNA fusion vaccines hold promise for vaccination against lymphoma

    The AOM/DSS murine model for the study of colon carcinogenesis: From pathways to diagnosis and therapy studies

    Get PDF
    Colorectal cancer (CRC) is a major health problem in industrialized countries. Although inflammation-linked carcinogenesis is a well accepted concept and is often observed within the gastrointestinal tract, the underlying mechanisms remain to be elucidated. Inflammation can indeed provide initiating and promoting stimuli and mediators, generating a tumour-prone microenvironment. Many murine models of sporadic and inflammation-related colon carcinogenesis have been developed in the last decade, including chemically induced CRC models, genetically engineered mouse models, and xenoplants. Among the chemically induced CRC models, the combination of a single hit of azoxymethane (AOM) with 1 week exposure to the inflammatory agent dextran sodium sulphate (DSS) in rodents has proven to dramatically shorten the latency time for induction of CRC and to rapidly recapitulate the aberrant crypt foci-adenoma-carcinoma sequence that occurs in human CRC. Because of its high reproducibility and potency, as well as the simple and affordable mode of application, the AOM/DSS has become an outstanding model for studying colon carcinogenesis and a powerful platform for chemopreventive intervention studies. In this article we highlight the histopathological and molecular features and describe the principal genetic and epigenetic alterations and inflammatory pathways involved in carcinogenesis in AOM/DSS-treated mice; we also present a general overview of recent experimental applications and preclinical testing of novel therapeutics in the AOM/DSS model

    Lack of association between genetic variants in the mannose-binding lectin 2 (MBL2) gene and HPV infection

    Get PDF
    Genetic variants in the immunomodulatory gene mannose-binding lectin 2 (MBL2), were associated with risk, severity, and frequency of viral infections. In a case-control setting, we investigated the association of MBL2 functional polymorphisms with Human Papillomas Virus (HPV) infection. No differences between cases (HPV+) and controls (HPV-) were found in the distribution of each single genotypes or allele. Haplotype analysis did not show any difference between HPV+ and HPV- groups
    corecore