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Abstract

Background and Objective: The paper focuses on the numerical strategies to optimize a
plasmid DNA delivery protocol, which combines hyaluronidase and electroporation.

Methods: A well-defined continuum mechanics model of muscle porosity and advanced
numerical optimization strategies have been used, to propose a substantial improvement
of a pre-existing experimental protocol of DNA transfer in mice. Our work suggests that
a computational model might help in the definition of innovative therapeutic procedures,
thanks to the fine tuning of all the involved experimental steps. This approach is particularly
interesting in optimizing complex and costly protocols, to make in vivo DNA therapeutic
protocols more effective.

Results: Our preliminary work suggests that computational model might help in the
definition of innovative therapeutic protocol, thanks to the fine tuning of all the involved
operations.

Conclusions: This approach is particularly interesting in optimizing complex and costly
protocols for which the number of degrees of freedom prevents a experimental test of the
possible configuration.

1. Introduction

DNA delivery consists in injecting engineered DNA plasmid vectors carrying nucleotide
sequences coding therapeutic molecules, so that transfected cells can work as factory to pro-
duce locally or systematically specific products to correct pathological defects Wolff et al.
(1990). It has a deep potential in revolutionizing therapeutic treatments in the field of
monogenic, polygenic, infectious and cancer diseases, as demonstrated in past and recent
studies Hardee et al. (2017). However, the clinical use of DNA transfer protocols is still very
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limited. Even though the efficacy has been proven in small animals studies, further improve-
ments of DNA delivery and gene expression have to be performed before a standardisation
of these treaments for humans Al-Dosari and Gao (2009).

1.1. DNA transport: a path full of pitfalls

DNA delivery is limited by the transport of the plasmid through the Extra-Cellular Ma-
trix (ECM) and through the cell membranes to reach the cell nucleus for the gene expression
Notarangelo et al. (2014). Indeed, ECM consists of a structural collagen network embedded
in a gel of glycosaminoglycans (GAGs) and proteoglycans, which prevents the free diffusion
of macromolecules such as plasmid vectors. Worstly, nuclease enzymes, which degrade the
DNA, are present in the ECM Bureau et al. (2004). In addition, the cell membrane, which
consists of a phospholipid bilayer with proteins, yields a barrier that have to be permeabilized
to allow DNA penetration inside the cell.

A lot of bioengineering strategies are still under investigation for encompassing these two
barriers. On one hand, the administration of hyaluronidase — an enzyme able to digest the
ECM — before the DNA injection improves the plasmid distribution within the tissue Buhren
et al. (2016); Girish and Kemparaju (2007). On the other hand, electroporation (EP), which
consists in permeabilizing the cell membrane by mean of electrical short pulses, enables the
penetration of non permeant molecules such as DNA Aihara and Miyazaki (1998); Rols et al.
(1998); André and Mir (2004). The combination of hyaluronidase injected before the intra-
muscular DNA injection by electroporation has been shown to improve the DNA delivery
and the gene expression as discussed in several papers. One can cite for instance McMahon
et al. (2001); Schertzer et al. (2006); Chiarella et al. (2013b); Chiarella and Signori (2014);
Akerstrom et al. (2015). Moreover, the role of hyaluronidase in improving DNA immuniza-
tion protocol by EP has been largely discussed in Chiarella et al. (2013a); De Robertis et al.
(2018). Interestingly, the experimental study of Mac Mahon et al. have demonstrated the
differences in gene expressions due to time interval between intramuscular DNA injection
and application of electric fields McMahon et al. (2001). Even though the link between
DNA transfer and gene expression is still not well understood, these results suggest that it is
possible to optimize the experimental protocols to maximize the DNA delivery for an higher
gene expression also by mathematical studies Leguebe et al. (2017).

1.2. Experimental protocol and degrees of freedom for optimizing DNA transfection

Our paper focuses on the specific experimental protocol on mice, which has been proposed
by Chiarella and Signori Chiarella and Signori (2014). The experimental set-up consists
in combining hyaluronidase injection, an enzyme which degrades the ECM improving the
diffusion in the muscle, with electroporation right after the DNA injection to vectorize the
DNA within the permeabilized cells.

More precisely, the intramuscular DNA transfection is performed in 3 steps as schematized
by Figure 1. First, 10 units of bovine hyaluronidase in 25ul of buffer solution are injected by
intramuscular injection during a few seconds Ty, . After a waiting period of about 1h 30°,
30ul of DNA (50ug) is injected at the same location as the hyluronidase during an injection
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time Tpya . Then electroporation is performed a few seconds ATgp after the DNA injection.
The gene expression is verified 3-5 days later.

hyaluronidase Waiting time DNA injection EP
injection
><—>L—>
Ty AT Tona ATgp

Figure 1: Time schedule of the experimental protocol.

Many parameters might be adjusted, such as the concentration of hyaluronidase and
DNA, the choice of the muscle to be transfected, the electric pulse parameters and the
injection speed André et al. (2006); Pucihar et al. (2011). However in order to minimize the
modifications of the experimental protocol, and to propose realistic optimized protocols, we
focus on the following 5 degrees of freedom. They consist in the times for both hyaluronidase
and DNA injections Ty and Tpya respectively, the waiting times AT and ATgp, and the
depth of the site of the intramuscular injection D;,; which is about 1 centimeter deep.

1.3. Goal of the computational study and paper organisation

The aim of this work is to investigate thanks to well-defined numerical algorithms, the
influence of the 5 above degrees of freedom to optimize the distribution of DNA within the
muscle, and to propose a realistic optimization of the experimental set-up protocol.

This numerical study is based upon the continuum mechanics model of enzyme-based
tissue degradation combined with therapeutic molecule proposed by Deville et al. Deville
et al. (2018). Interestingly, numerical optimization algorithms are shown to be an appropriate
tool to optimize the experimental protocol set-up by maximizing the DNA distribution within
the muscle. This has a deep potential since it could lead to the optimization of the DNA
delivery.

The paper is organized as follows. Section 2 presents the mathematical and numerical
methods proposed in the article to tackle the optimization problem. The mathematical
model is presented in Subsection 2.1. The model has been proposed by Deville et al. in
a dimensionless formulation Deville et al. (2018). The link between the dimensionless pa-
rameters and the physical parameters, as well as the values of the fixed parameters are also
presented. The numerical methods regarding the computation of the the partial differential
equations on the one hand and on the optimization strategy on the other hand are given in
Section 2.2. Then the results are presented in Section 3. An optimized and realistic pro-
tocol is proposed to improve the DNA distribution with the muscle, before electroporation.
According to the numerical results, it is possible to increase of 30% the DNA distribution,
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which could improve a lot the DNA delivery, even though the link between the amount of
vectorized DNA and gene expression is still unclear. The paper ends with some conclusions
and future perspectives.

2. Material and Methods

A mathematical model, describing the different phases of the dosing regimen, represents
a strong and powerful tool for the determination of the correct execution of the different
actions to be taken during the administration protocol. In particular, starting form the
analysis produced in Deville (2017), we have observed how some parameters are not optimally
selected, although they appears to be able to change deeply the final effect of the whole
procedure. Some experimental trials have been produced in order to drive the selection of
the best values, but the number of attempts is clearly limited by the costs of the experimental
activity, and the final result can be reasonably further improved. Under this perspective,
the use of a mathematical model would be of great aid.

2.1. The poroelastic model of Dewville et al.

In this section, we present the enzyme-based tissue degradation model recently proposed
by Deville et al. in Deville et al. (2018). Modeling the behavior of porous media in which
different continua interact at the microscopic level is not an easy task. In the current liter-
ature the mechanics of a porous medium is typically described by two different approaches:
the averaging approach and the macroscopic approach Ambrosi et al. (2002), also known as
mixture theory. The basic premise of the mixture theory is that the space occupied by a
mixture is occupied co-jointly by the various constituents of the mixture, each considered as
a continuum of its own. At any point of the space occupied by the mixture, there will be a
particle belonging to each constituent Fusi et al. (2006); Chapelle and Moireau (2014). The
model of Deville et al. combines the poroelastic theory of mixtures with the transport of en-
zymes and DNA plasmid densities in the extracellular space. The effect of the hyaluronidase
on the tissue porosity and the mechanical response of the muscle are also accounted for.

2.1.1. Heuristics of the model

The rationale of the model is schematically described in Figure 2. The biological tissue
is considered as a binary mixture of a solid and an interstitial fluid. The solid phase consists
of cells and extracellular matrix (ECM) for which mass and momentum balance laws are
written. The specificity of the model of Deville et al. lies in the fact that it accounts for
the change of porosity due to the effect of hyaluronidase, which degrades the extracellular
matrix.

The governing equations are set in the fixed reference domain —the tissue at the initial
time— denoted by €2y. For the sake of simplicity, we assume that our system undergoes very
small perturbations (see Deville et al. (2018) for more details).
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Figure 2: Schematic description of exchange pathways and production terms of the different phases.
From Deville et al. (2018).

2.1.2. Mathematical statement of the model

The poroelastic model of Deville et al. describes the behavior of the volume fractions of
ECM, cells and fluid —namely the blood in the tissue— denoted respectively by g¢, g, and
f, as well as the evolution of the hyaluronidase concentration h and the DNA concentration
denoted by c¢. The displacement vector, due to fluid injection is denoted by u, and P is the
inner pressure within the tissue. The dimensionless model reads as follows

(g + 9.+ f=1, (1a)
V- ((9¢ + 90) AV -w)I +7@(Vu + Vu?l))) = VP, (1b)
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Jons = %z vP-D° Vf and J,.= %E VP -D! V. (2)
The saturation assumption (la) ensures that the tissue is composed by nothing else but
ECM, cells and fluid. Elasticity equations with a slightly compressible cells phase are then
set in (1b)—(1c). The evolution of the porosity of two phases (cells and ECM) are then given
by (1d)—(1e). Equation (1f) describes the distribution and the effect of the hyaluronidase on
the ECM porosity, while equation (1g) describes the distribution of DNA. The above partial
differential equations (PDEs) system is complemented with initial and boundary conditions.
Denote by I' the boundary of the domain €2;. We generically denote by n the normal to
Q) outwardly directed from the inside to the outside of the domain. We suppose that I' is
split into 2 parts denoted respectively by I', and I'; (see Fig. 3). The following boundary
conditions are imposed

S¥n=0onT,, andu=0onT, (3)
P=0onI;and VP-n=0onT,, (4)

h =0 on I}, (5a)
(fD°, Vh+hJ,,) -n=0onTl,. (5b)

enz

The same type of boundary conditions are applied to DNA plasmid concentration:

c=0onTYy, (6a)
(fD..Ve+ cdy,) -n=0onT,. (6b)

dna

The initial conditions are given in Table 1.

2.1.3. Dimensionless parameters, and values of the physical parameters

We can observe from equation 6 how the PDEs system involves a large number of pa-
rameters. Being the model dimensionless, it is important to recall the link between the
dimensionless (with an overline) and the physical (without overline) parameters as given in
Deville et al. (2018). We denote by Iy the characteristic length of the tissue. The dimen-
sionless Piola-Kirchhoff and Cauchy stress tensors are defined as S¥ = S¥/(\ + 2u) and
oE = o /(X + 2u), respectively, and we define the dimensionless parameters
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We choose the (A + 2u) parameter as a natural pressure scale; by this choice the di-
mensionless elastic parameters \, i are of order 1 Lang et al. (2016). Some of the physical
parameters can be found in the literature, and others depend on the experimental protocol.
The physical parameters that are considered fixed are given in Table 1, where, if nothing is
reported, correspond to the values proposed Deville et al. (2018).

Table 1: Values of the physical parameters fixed for the numerical parametric studies, see also Deville et al.

(2018).
Parameter Symbol Value Unit Reference
Characteristic length of the muscle lo 1072 m
Reference mass concentration co 1 kg/m3
Density of fluid phase p? 102 kg/m3 Yao et al. (2012)
Density of solid phase p?*o 1.09 x 103 kg/m? Ward and Lieber (2005)
Specific storage coefficient EN) 10~6 1/Pa
Hyaluronidase injected mass concentration cie;:jz 8 x 1073 kg/m? McMahon et al. (2001)
Mass concentration of injected DNA at Txy +AT c?nrga 1.67 kg/m3 Chiarella and Signori (2014)
Permeability K 10~ 11 m?/Pa/s Swartz and Fleury (2007)
Lamé first parameter A 7.14 x 10° Pa Zéllner et al. (2012)
Lamé second parameter n 1.79 x 10° Pa Zéllner et al. (2012)
Diffusion coefficient of the enzyme Dgnz 1074 m2/s
Diffusion coefficient of the therapeutic agent D?ina 1079 mz/s
Starling’s coefficient ol 5x 1072 1/Pa/s Soltani and Chen (2012)
Fluid/solute coefficient Ye 0.9 - Baxter and Jain (1989)
Measure of treatment efficacy K 10— 14 mS/s/U
Recovery coefficient ar 5x 1074 1/s
Hyaluronidase degradation rate kgnz 1x 1074 1/s
DNA degradation rate kgna 2x 1074 1/s
Driving pressure Py 10~1 Pa
Initial values Symbol Initial value Unit
Volume fraction of fluid pyr(0,x) = (P]J:‘)‘hys 0.1 -
Volume fraction of ECM @e(0,x) 0.4 -
Volume fraction of cells ©e(0,x) 0.5 -
Network dilatation V - u(0,x) 0 -
Enzyme concentration h(0,x) 0 U/m3
Concentration of DNA c(0, x) 0 peg/ pl
Initial pressure p(0, x) 0 Pa
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2.2. Numerical methods

2.2.1. Finite Element Method to solve the PDE system

The numerical simulation of the effects of the complete dosing regimen is obtained by
discretizing a portion of the tissue where the injections will be performed and observing the
diffusion of the plasmid and the DNA in this volume, resolving the previously described
systems of equations.

Given the value of all the parameters by Table 1, the aforementioned PDE system (1)
has been implemented with the finite element method (FEM). For the sake of simplicity,
the domain representing the tissue is half of a sphere, and thanks to symmetries, only a
2D axisymmetric version of system (1) is solved. The mesh has been generated with three-
dimensional finite element mesh generator Gmsh Geuzaine and Remacle (2009). The mesh
is refined in the vicinity of the injection point, in order to describe precisely the displacement
(see Fig. 3). The flat top I, represents the derma and the epiderma on which a free boundary
value condition with no flux is imposed. The boundary I'; is assumed to be far enough from
the injection point, so that the pressure and the normal component of the Cauchy stress
tensor are set to zero. The details of the numerical schemes to solve the nonlinear model
are provided in Section 4 of Deville et al. (2018). In Deville (2017) a sensitivity analysis of
the grid density has been performed, in order to check the minimum grid density assuring
the convergence (and stability) of the numerical solution. The following computations have
been performed always using this grid density (around 8000 cells). The open-source library
FreeFEM++ Hecht (2012) as been used for the calculations. The code FreeFEM++ has been
run on a 2 x Xeon 18-Core 6140 2.3Ghz with 96GB RAM.

Figure 3: Computational grid for the poroelastic problem. The density of the mesh is increased in the
vicinity of the injection point. The axisymmetric configuration of the half sphere is chosen to minimize the
computational. The flat top I';, represents the derma and the epiderma on which a free boundary value
condition with no flux is imposed.
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2.2.2. Optimization method

The adopted optimization strategy is based on the general framework of the “Multi-
point Approximation Method” Toropov (1995), or generally speaking the “Metamodel-Based
Simulation Optimization” (see Barthelemy and Haftka (1993); Barton and Meckesheimer
(2006)). This approach can be synthetically described as follows. The first step consists in
the generation of a suitable number of training points, preferably regularly spaced, spanning
the design variable space. The number of the training points is unknown a priori, depending
typically on the rate of variation of the objective function and on the number of design vari-
ables. It can be fixed also considering the allowed computational effort for the optimization
activities. The objective function is now computed at the training points, obtaining the so
called training set. The training set is used in order to derive an interpolation/approximation
of the objective function over the full design space, generally called metamodel (a model of
the model). The metamodel is substantially an algebraic model, able to mimic the numer-
ical response of the computationally expensive mathematical model. The training phase of
the metamodel depends on the characteristics of the metamodel itself: during the training
phase, the parameters of the metamodel are optimized in order to minimize the prevision
error. Some metamodels are trained easily, i.e. by solving a linear system whose dimen-
sion is equal to the number of training points, other metamodels require the solution of an
optimization algorithm (like neural networks). A small part of the training set can be put
momentarily aside, forming the wverification set, and then it can be used at the end of the
training phase in order to verify the accuracy of the metamodel on positions not previously
used during the training. Several techniques can be now adopted in order to select new train-
ing points with the aim of increasing the accuracy of the prediction, if required: examples are
reported in Peri (2009); Shu et al. (2017). Once the quality of the metamodel is satisfactory,
it can be applied to the optimization algorithm, in order to identify the optimal parameters
of the mathematical model. Since the evaluation of the metamodel is computationally in-
expensive if compared with the mathematical model, the overall computational cost of the
optimization procedure is equal to the time of the training phase. In this paper, we selected
the Orthogonal Arrays (OA) for the generation of the training set Hedayat et al. (1999). OA
is a mathematically consistent methodology for the reduction of the number of the training
points required by a generic metamodel (interpolation/approximation algebraic model). It
is designed for preserving the orthogonality of the samples, starting from the classical L*
factorial design, where L is the number of subdivisions (levels) for each design variable and k
is the number of the involved design variables. Since metamodels are generally very sensible
to the uneven spacing of the training points, a random selection is inappropriate. There are
plenty of other methodologies, equally effective, but in our experience, OA is a good choice
in combination with the selected optimization strategy.

3. Results

3.1. Influence of the noise on the optimization - optimization criterion selection

The determination of the optimal values of the four parameters requires, in general,
the application of an optimization algorithm: once a mathematical programming problem is
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formulated, a large number of trial vectors of the design parameters need to be automatically
generated and evaluated, as soon as the convergence to the optimal values of the parameters is
obtained. We also need a quantity to be minimized /maximized in order to drive the selection
of the best parameters, and the area reached by the DNA-plasmid is suitable to this goal.
We thus define the effective area as the area where the concentration of the DNA-plasmid
is higher than 5% of the injected concentration. The optimized configuration is defined
as that configuration which maximizes the effective area. Due to the ECM nucleases, the
injected plasmid is degraded and the effective area admits a maximum value, which can be
determined numerically. In Figure 4 the typical profile of plasmid effective area is given.

Unfortunately, the numerical noise connected with the numerical solution of the problem
and the large computational time required to finalize a single simulation represent two great
obstacles in the application of this approach. In fact, a noisy behavior of the function to
be minimized/maximized is typically creating a number of false minima/maxima, and the
optimization algorithm is sometime trapped into those regions. Regarding the CPU time for
the solution of a single configuration, depending on the values of the parameters, it could be
greater than five hours, and around ten thousand of simulation are needed for reaching the
convergence to the optimal solution in our case.

To give an example of the effects of the numerical noise, Figure 5 is reporting the effects
of a very small variation of a single parameter while all the other parameters are kept fixed.
The effect of the variation of a single parameter on the total effective area is reported in
the corresponding sub-figure. The central value is representing one of the best configuration
identified during the following exploration. We can observe how, in the investigated region,
the time between the two injections is not changing at all the value of the effective area,
while for the other parameters a nearly random effect is observed: it is evident that a sort
of uncertainty is connected with the estimate of the effective area, and the simple punctual
value provided by the simulation cannot be representative of the real effects of the selected
parameters.

For this reason, we thus need to define a different value of the effective area, able to
account for the not negligible local sensitivity to the parameters of the output of the simu-
lations. We decided here to apply a worst case approach, and the average value of a group
of local samples, reduced by the associated variance, is defined as our objective function.
Statistically, the use of this quantity guarantees that the effective area in the neighborhood
of the selected configuration of the dosing parameters is greater than the indicated value
with a probability of 84.15%. From now on we will refer to the effective area as its average
value (computed on a sampling set of 9 configurations) minus the variance.

In Figure 6 we have reported the full evolution curve of the effective area for the nine
configurations adopted during the sensitivity analysis of a single simulated point. On left, the
differences in absolute terms are reported, on the right the percentage differences are shown.
Percentage differences are computed with respect to the value of the central point of the
distribution. We can observe how a difference of about eight percentage points is recorded
among the different curves. This represents a sign of great sensitivity of the simulation
model to the parameter variation. The fluctuations are slightly amplified by the lower value

10
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Figure 4: Typical profile of the evolution of the DNA area from the starting time to the end of the plasmid

injection.

of the effective area at the end of the curve. This behavior represents a strong element for
the consideration of an averaged value instead of a punctual value of the effective area.

3.2. Optimization method

The generation of the training set is obtained by the Orthogonal Arrays method presented
in Hedayat et al. (1999). 16 levels for the regular subdivision of each direction of the design
space have been selected. The OA criterion to reduce the number of sampling points from
65536 points to 512 sampling. Since we need to perform a sensitivity analysis for each sample

point, the total number of configurations to be analyzed is 4608.

As a surrogate model, a multi-dimensional spline approximator Peri (2018) has been
25 adopted, tuned using the results provided by the previously produced training set. The
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range of variation of each parameters has been prefixed as follows. AT'is varied between
300 and 10800 seconds; Ty and Tpna are varied between 5 and 30 seconds, and Dy is varied
between 1 and 2 centimeters. These values have been selected according to preliminary
numerical experiences obtained by Deville Deville (2017).

In order to increase the credibility of the meta-model, some further training points have
been added sequentially in those areas where the objective function appears to be favorable.
The full number of training points, at the end of the refinement phase, has become 686 (6174
configurations). A solution of mathematical model is produced for the new training points,
and the difference between the value of the objective function estimated by the meta-model
and the real value provided by the mathematical model at the new point is assumed as the
precision index of the meta-model. The history of the refinement phase is reported in Figure
7. Range of variations of the parameters are also adjusted.
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Figure 7: Precision index of the meta-model during the refinement phase.

The determination of the best configuration is obtained by regularly sampling the design
space and then recursively refining the investigation as soon as the dimension of the inves-
tigated area is lower than a prescribed limit. Since this operation is completed by using the
metamodel, we can adopt very strict parameters: we have here 51 subdivisions along each
coordinate direction and the final spatial precision of the search is fixed at 1075,

3.8. Numerically optimal protocols

Figure 4 shows that the best value of ATgp is about 30 seconds since the maximal effective
area reaches a plateau after a few tens of seconds which lasts about 30 seconds. This is in
line with the experimental constraints for the preparation of the EP set-up. If ATgp is longer
than 30-40 seconds, the protocol suffers for a reduction of efficacy.

Figure 8 and Figure 9 represents the parameters region of Ty, , AT and Tpya , for different
depth of the injection point Di,;, for which the objective function is above 99% of the
maximum observed value respectively 1min and 16 min after the end of the DNA injection.

If we are able to complete the preparation of the EP phase in 1 minute, the duration
of the plasmid injection should be very small. From Figure 8 we can observe how the

13
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Figure 8: Range of parameters for which a loss of 1% with respect to the maximum realizable effective area
is obtained. Time after the plasmid injection completion: 1 minute.
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Figure 9: Range of parameters for which a loss of 1% with respect to the maximum realizable effective area
is obtained. Time after the plasmid injection completion: 16 minutes.

preferable value of Djyjis not univocal, since similar values are obtained for 1.2 centimeters
and 2 centimeters, but the values of AT are different, being shorter in the case of the deeper
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injection. This may represent an advantage if several experiments are performed in series.
On the contrary, if we observe the results after 16 minutes, reported in Figure 9, the
value of the objective function for the case of Djyjequal to 2 centimeters is larger than in
the other cases. Tpna can be longer, while AT is variable.
Figure 10 reports the optimal range of parameters when Dj,;is fixed at 2 centimeters,
when AT ranges from 1 min to 16 min. The scale of the objective function is changing from
sub-picture to sub-picture.
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Figure 10: Range of parameters for which a loss of 1% with respect to the maximum realizable effective area
is obtained. Depth of the injections: 2 centimeters.

After 8 minutes we have the larger tolerance in the best parameters: this area is largely
reduced if the EP is performed after 16 minutes. At the same time, the objective function is
reduced if the EP waiting time is increased. The numerical estimate of this loss is reported
in Figure 11.

In order to quantify the improvements potentially obtained by the optimization proce-
dure, a reference configuration, commonly adopted for this kind of experiments, has been
compared with the best configuration identified by the optimization procedure. Results are
reported in Figure 12. An increase of about 30% is obtained if the EP is performed after no
more then 8 minutes from the DNA injection: in fact, it is obviously convenient to perform
the EP at the moment of the maximum expansion of the DNA into the tissues. If the wait-
ing time is greater than 10 minutes, the two different strategies does not show significant
differences, probably because the dynamics connected with the degradation of the DNA are
substantially independent from the protocol details. The observation of these results suggest
not to delay the EP procedure after 30 seconds: this request may require the application of a
fully automated operations, in order to reduce the time spent in all the different preliminary
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sub-activities required by EP, such as correct immobilization of the subject undergoing to
EP, application of conductive gel in the area to treat, correct placement of the electrodes,
...). This time reduction is of paramount importance since a longer waiting time is almost
nullifying all the advantages obtained by the optimized protocol.
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Figure 12: Comparison between a reference configuration and the overall optimal configuration identified by
the numerical analysis.

4. Discussion

In the experimental protocol, a waiting time of 1h 30 between the two injections, of
hyaluronidase and DNA, is adopted. Typically, Tpna is about one or two hours later respect
to the hyaluronidase administration. This has been motivated by the necessity to be sure
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that the hyaluronidase has enough time to develop its effect, increasing the porosity of the
ECM and then facilitating the access of the plasmid DNA at the border of the cells.

At the end of the solution of the optimization process, two categories of best solutions
have been identified: the overall best configuration ever computed in terms of effective
area and the best configuration in terms of objective function. The second solution is the
preferable one, since it takes into account the variability of the effective area under small
variations of the control parameters. The set of realized parameters differs largely between
the two solutions: in particular, while in the first case AT is 3500 seconds, in the second
case AT'is nearly 300 seconds. This second option is absolutely preferable, since it reduces
a lot the overall execution time of the experiment, but a deeper analysis is needed in order
to understand why different timings led to similar results. In Figure 13, the elements for
a reasonable explanation are reported. In the picture, we have plotted the porosity of the
tissue at the time of the DNA-plasmid injection for the two different values of AT'. In the
same picture, the maximum expansion of the DNA-plasmid in the tissue is also reported,
plotting the area in which the concentration of DNA-plasmid is more than 5%. We can
observe how the effect of the hyaluronidase is clearly increasing with AT, since almost the
whole computational volume has been interested by the action of the hyaluronidase when
AT is 3500 seconds.

For the shorter value of AT, the same effect is obtained in the very central part of the
computational volume, but the effect vanishes quickly. On the bottom part of Figure 13,
the area in which we have a significant concentration of DNA-plasmid is reported: we can
observe how this area is really small, so that the effect of the hyaluronidase in the case of
the small AT is absolutely sufficient.

This result is connected with the large dimensions of the DNA-plasmid, and consequently
its great difficulties in traveling into the ECM. Observing this result, we can argue that
multiple injections of DNA-plasmid in a small area could probably increase (linearly with
the number of injection sites) the overall effect of the protocol, since further modifications
of the method of administration of the hyaluronidase appear not to be effective.

In Table 2, the exact values of the design parameters are reported for three different
options for the protocol: the reference values («), based on some indications about common
practice adopted in pre-clinical protocols, the configuration providing the best overall value
of the effective area () and the configuration maximizing the objective function (7). Since
the objective function is taking into account the stability of the solution in the neighborhood
of the computational point, this last configuration is preferable. We can observe that, in the
case a we have the maximum values for AT and Dy;, while Ty and Tpna are the smaller
ones. Both [ and v suggest a smaller value of AT, significantly shorter in the case 7.
This is probably the more interesting result, since this allows for a huge compression of the
overall duration of the experiment and gives also some indications about the behavior of the
DNA-plasmid. Ty, and Tpya are larger for both 8 and « with respect to a: due to the small
injected quantities, probably the implementing rules suggested in  cannot be practically
achieved. The smaller value of Dj,jin 8 and v, on the contrary, is compatible with the
experimental setup.
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Figure 13: On top: Porosity variation in the computational domain at the corresponding AT . On left, AT is
3800 seconds, on right is about 290 seconds. On bottom, the maximum area where the concentration of the
DNA-plasmid is larger than 5%.

Table 2: Values of the control parameters for three different configuration of the protocol: values in the
standard experimental setup, best effective area (punctual value very sensitive), best objective function
value (locally averaged value).

Parameter Standard protocol Best EA Best OF

Thy [s] 10.00 28.33 21.47
AT [s] 5400.00 3800.00  289.60
Tonals]  10.00 9.98 14.54

5. Conclusions

Improvements of gene electrotranfer protocol are becoming of paramount importance to
translate this treatment into human patients. When DNA plasmid vector is injected into
tissues, its expression is limited, due to the presence of ECM and cell membrane barriers.
The use of hyaluronidase, which allows a partial digestion of the ECM, and EP - a physical
methodology favoring cell membrane permeabilization - represents a valid platform for DNA
delivery expression. In this study, a mathematical model simulating the core part of the de-
livery protocol has been applied in order to enhance the DNA expression, identifying the best
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injection and waiting time for the DNA administration. Once numerically compared with
the standard operative protocol, the optimal parameters obtained by our algorithms consist
of an injection localisation about 1-2 cm deep, an injection time for both hyaluronidase and
DNA of about 10s and a waiting time between the two injections below 300 s. According
to our simulations improvement of about 30% of the effective area of DNA is achievable,
which could lead to a much better gene expression than in the standard protocol. Ideally
the electroporation should be performed less than 1 min after the end of the DNA injection.

These numerical results will be confirmed (or not) by forthcoming dedicated experiments
in vivo to compare the standard protocol proposed in Chiarella and Signori (2014) with
our optimized protocols. This would also be a decisive aid in the transfer of this medical
approach from bench to clinical applications.

The application of this optimization procedure can take also into account the peculiarities
of the different patients, through the specific mechanical and morphological characteristics
of the tissues (personalized medicine).

The reduced diffusion of plasmid DNA into the tissue has been also evidenced by this
study: a possible solution to this problem could be the adoption of multiple-site injections.
This strategy, possibly in combination with a CNC syringe for the exact actuation of the
protocol, could allow the plasmid DNA to reach areas of the tissue where the hyaluronidase
has produced its effects.
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