1,813 research outputs found

    Dynamic trapping near a quantum critical point

    Full text link
    The study of dynamics in closed quantum systems has recently been revitalized by the emergence of experimental systems that are well-isolated from their environment. In this paper, we consider the closed-system dynamics of an archetypal model: spins near a second order quantum critical point, which are traditionally described by the Kibble-Zurek mechanism. Imbuing the driving field with Newtonian dynamics, we find that the full closed system exhibits a robust new phenomenon -- dynamic critical trapping -- in which the system is self-trapped near the critical point due to efficient absorption of field kinetic energy by heating the quantum spins. We quantify limits in which this phenomenon can be observed and generalize these results by developing a Kibble-Zurek scaling theory that incorporates the dynamic field. Our findings can potentially be interesting in the context of early universe physics, where the role of the driving field is played by the inflaton or a modulus.Comment: 4 pages, 3 figures + 5 page supplemen

    On the Lyapunov Matrix of Linear Delay Difference Equations in Continuous Time

    Full text link
    The fundamental matrix and the delay Lyapunov matrix of linear delay difference equations are introduced. Some properties of the Lyapunov matrix, and the jump discontinuities of its derivative are proven, leading to its construction in the case of single delay or commensurate delays. An approximation is proposed for the non-commensurate case

    Jet-Images: Computer Vision Inspired Techniques for Jet Tagging

    Full text link
    We introduce a novel approach to jet tagging and classification through the use of techniques inspired by computer vision. Drawing parallels to the problem of facial recognition in images, we define a jet-image using calorimeter towers as the elements of the image and establish jet-image preprocessing methods. For the jet-image processing step, we develop a discriminant for classifying the jet-images derived using Fisher discriminant analysis. The effectiveness of the technique is shown within the context of identifying boosted hadronic W boson decays with respect to a background of quark- and gluon- initiated jets. Using Monte Carlo simulation, we demonstrate that the performance of this technique introduces additional discriminating power over other substructure approaches, and gives significant insight into the internal structure of jets
    • …
    corecore