9 research outputs found

    Calcineurin inhibitor Tacrolimus impairs host immune response against urinary tract infection

    No full text
    Calcineurin inhibitor Tacrolimus, is a potent immunosuppressive drug widely used in order to prevent acute graft rejection. Urinary tract infection (UTI) is the most frequent infectious complication in renal transplant patients and long-term use of Tacrolimus might be involved in higher susceptibility to bacterial infections. It remains largely unknown how Tacrolimus affects the host innate immune response against lower and upper UTI. To address this issue, we used experimental UTI model by intravesical inoculation of uropathogenic E.coli in female wild-type mice pre-treated with Tacrolimus or solvent (CTR). We found that Tacrolimus pre-treated mice displayed higher bacterial loads (cystitis, pyelonephritis and bacteremia) than CTR mice. Granulocytes from Tacrolimus pre-treated mice phagocytized less E. coli, released less MPO and expressed decreased levels of CXCR2 receptor upon infection. Moreover, Tacrolimus reduced TLR5 expression in bladder macrophages during UTI. This immunosuppressive state can be explained by the upregulation of TLR-signaling negative regulators (A20, ATF3, IRAK-M and SOCS1) and parallel downregulation of TLR5 as observed in Tacrolimus treated granulocytes and macrophages. We conclude that Tacrolimus impairs host innate immune responses against UTI

    Release of extracellular DNA influences renal ischemia reperfusion injury by platelet activation and formation of neutrophil extracellular traps

    No full text
    Acute kidney injury is often the result of ischemia reperfusion injury, which leads to activation of coagulation and inflammation, resulting in necrosis of renal tubular epithelial cells. Platelets play a central role in coagulation and inflammatory processes, and it has been shown that platelet activation exacerbates acute kidney injury. However, the mechanism of platelet activation during ischemia reperfusion injury and how platelet activation leads to tissue injury are largely unknown. Here we found that renal ischemia reperfusion injury in mice leads to increased platelet activation in immediate proximity of necrotic cell casts. Furthermore, platelet inhibition by clopidogrel decreased cell necrosis and inflammation, indicating a link between platelet activation and renal tissue damage. Necrotic tubular epithelial cells were found to release extracellular DNA, which, in turn, activated platelets, leading to platelet-granulocyte interaction and formation of neutrophil extracellular traps ex vivo. Renal ischemia reperfusion injury resulted in increased DNA-platelet and DNA-platelet-granulocyte colocalization in tissue and elevated levels of circulating extracellular DNA and platelet factor 4 in mice. After renal ischemia reperfusion injury, neutrophil extracellular traps were formed within renal tissue, which decreased when mice were treated with the platelet inhibitor clopidogrel. Thus, during renal ischemia reperfusion injury, necrotic cell-derived DNA leads to platelet activation, platelet-granulocyte interaction, and subsequent neutrophil extracellular trap formation, leading to renal inflammation and further increase in tissue injur

    Additional file 2: of No difference in renal injury and fibrosis between wild-type and NOD1/NOD2 double knockout mice with chronic kidney disease induced by ureteral obstruction

    Get PDF
    FigureS2. Total collagen in kidneys of WT (white bars) and NOD1/2 DKO (black bars) mice after 0, 3, 7, and 14 days following obstruction. Total collagen was assessed by Picro Sirius Red staining which was digitally analysed (A, B). Data are expressed as mean ± SEM. N = 9/group. (TIFF 1068 kb

    Additional file 3: of No difference in renal injury and fibrosis between wild-type and NOD1/NOD2 double knockout mice with chronic kidney disease induced by ureteral obstruction

    No full text
    Figure S3. Renal inflammation in WT (white bars) and NOD1/2 DKO (black bars) mice after 0, 3, 7, and 14 days following obstruction. IL-1b (A) and TNF-α (B) were measured in total kidney homogenates with specific ELISAs. Data are expressed as mean ± SEM. Results were analysed with the non-parametric two-tailed Mann-Whitney U-test. *P < 0.05. N = 9/group. (TIFF 2728 kb

    Additional file 1: of No difference in renal injury and fibrosis between wild-type and NOD1/NOD2 double knockout mice with chronic kidney disease induced by ureteral obstruction

    No full text
    Figure S1. The genotype of NOD1/2 DKO mice. Genomic DNA from mice was amplified by PCR with specific primers to detect the disrupted sequences on a 1% agarose gel with a 100 bp marker. First 5 bands are the KO mice and the last bands are the WT mice in A and B. N = 5/3 per group. (TIFF 12868 kb
    corecore