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No difference in renal injury and fibrosis
between wild-type and NOD1/NOD2
double knockout mice with chronic kidney
disease induced by ureteral obstruction
Ingrid Stroo1†, Diba Emal1*†, Loes M. Butter1, Gwen J. Teske1, Nike Claessen1, Mark C. Dessing1,
Stephen E. Girardin3, Sandrine Florquin1,2 and Jaklien C. Leemans1

Abstract

Background: Chronic kidney disease (CKD) is characterized by sustained tissue damage and ongoing tubulo-interstitial
inflammation and fibrosis. Pattern recognition receptors (PRRs) including Toll-like receptors (TLRs) and NOD-like
receptors (NLRs) can sense endogenous ligands released upon tissue damage, leading to sterile inflammation and
eventually irreversible kidney disease. It is known that NOD1 and NOD2 contribute to the pathogenesis of various
inflammatory diseases, including acute kidney injury. However their role in chronic kidney disease is largely unknown.
The aim of this study was therefore to investigate the contribution of NOD1 and NOD2 in renal interstitial fibrosis and
obstructive nephropathy.

Methods: To do so, we performed unilateral ureteral obstruction (UUO) in wild type (WT) and NOD1/NOD2
double deficient (DKO) mice and analysed renal damage, fibrosis and inflammation. Data were analysed using
the non-parametric Mann-Whitney U-test.

Results: Minor changes in inflammatory response were observed in NOD1/2 DKO mice, while no effects were observed
on renal injury and the development of fibrosis.

Conclusion: No difference in renal injury and fibrosis between WT and NOD1/NOD2 DKO mice following obstructive
nephropathy induced by ureteral obstruction.
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Background
NOD1 and NOD2 are members of the cytoplasmic PRR
family of NLRs. PRRs are important in mediating a
rapid response to pathogens via recognition of several
highly conserved pathogen- associated molecular patterns
(PAMP). In addition to PAMPs various (endogenous)
damage-associated molecular patterns (DAMP) or stress
signals have been identified that can initiate sterile inflam-
mation [1]. Upon renal injury DAMPs are released such
as biglycan, high-mobility group box 1 (HMGB1), and

hyaluronic acid that can signal via TLRs and NLRs [2–5].
NOD1 and NOD2 detect specific substructures from bac-
terial peptidoglycan (PGN). NOD1 senses Gram−-derived
PGN containing Tri-DAP [6, 7], while NOD2 senses
Gram−- and Gram+-derived PGN containing MDP [8, 9].
In line, we found that NOD1/2 are involved in the devel-
opment of acute renal disease during septic shock induced
by bacterial components [10]. In addition to bacterial
structures, Sabbah et al. reported the activation of NOD2
by single-stranded RNA viruses [11]. Recently, activation
of NOD1 and NOD2 by the non-pathogenic derived cell
permeable small molecule DMXAA was reported [12]. As
far as we know, no endogenous DAMPs for NOD1 and
NOD2 are described. However, based on their structural
and functional similarities with other NLR family members
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and TLRs it could be speculated that NOD1 and NOD2
are also activated by currently unknown endogenous li-
gands. In line with this reasoning, Shigeoka et al. showed
that NOD1 and NOD2 participate in acute renal ischemia
reperfusion injury (IRI), suggesting that these receptors are
able to respond to endogenous ligands released upon IRI
[13]. NOD1 is widely expressed in many cell types and or-
gans including the tubular epithelial cells (TEC) in human
and mouse kidney [13–16]. NOD2 is expressed on murine
TECs, mesangial cells, podocytes and on human TECs and
glomerular endothelial cells [13, 17, 18]. Given the expres-
sion of NOD1 and NOD2 in the kidney and more specific
in TEC and the fact that NOD1/2 play a deleterious role in
acute kidney disease could suggest that these PRRs contrib-
ute to the pathogenesis of chronic renal damage as well.
PRRs like NLRP3 and TLR4 have already been shown to
play a role in obstructive nephropathy [19–21]. However,
nothing is known about the role of NOD1 and NOD2 in
inflammation and fibrosis during obstructive nephropathy.
In the present study we therefore investigated the role of
NOD1 and NOD2 in a model of obstructive nephropathy
induced by ureteral obstruction.

Methods
Mice
Pathogen-free 8- to 12-week old female C57Bl/6 WT
mice were purchased from Janvier (Le Genest, France).
NOD1/NOD2 DKO mice were generated from NOD1
and NOD2 knockout mice and backcrossed to C57Bl/6
background at least 10 generations as described before
[22]. Previously, we have characterized the DKO mice
phenotypically and this revealed that except for lower
liver weight in NOD1/2 DKO mice, there were no differ-
ences in body/organ weight, leukocyte count/compos-
ition and plasma biochemical markers between both
strains [10]. NOD1/2 DKO mice (Additional file 1) were
bred in the animal facility of the Academic Medical
Center in Amsterdam, The Netherlands. Age- and sex-
matched mice were used in all experiments. The animal
and Use Committee of the University of Amsterdam
approved all experiments.

Unilateral ureter obstruction
Mice (N = 9/group) received a pre-operative dose of an-
algesia (0.15 mg/kg buprenorfine, subcutaneously) and
were anesthetized by inhalation of 3% isoflurane, 0.2%
N2O and 2% O2 during the surgical procedure. The right
ureter was permanently ligated via a ventral approach
using 6–0 silk (Tyco, Gosport, UK). The ureter was li-
gated at the height of the lower part of the kidney. Mice
were sacrificed 3, 7 and 14 days after surgery via a heart
puncture (blood collection) followed by cervical disloca-
tion under general anaesthesia. Kidneys were snap fro-
zen in liquid nitrogen and stored at -80 °C or fixed in

10% formalin o/n prior to further processing. Contralat-
eral non-obstructed kidneys served as control.

Quantitative real-time RT-PCR
Total RNA was extracted from kidney using the TRIzol®
reagent (Invitrogen, Breda, The Netherlands) and con-
verted to cDNA. Quantitative real-time RT-PCR was
performed on a LightCycler® 480 System (Roche, Mij-
drecht, The Netherlands) using LightCycler® 480 SYBR
Green I Master mix (Roche). Specific gene expression
was normalized towards the reference gene TATA box
binding protein (TBP). Primer sequences are as follows:
NOD1 forward 5′-tcagactcagcgtcaaccag-3′ and reverse
5′-taaacccaggaacgtcacga-3′, NOD2 forward 5′-ggga-
gatgttggagtggaac-3′ and reverse 5′-agcgaagagcacact-
caacc-3′, and TBP forward 5′-ggagaatcatggaccagaaca-3′
and reverse 5′-gatgggaattccaggagtca-3′.

Histology and immunohistochemistry
Formalin-fixed tissue was embedded in paraffin using
standard procedures. Four-μm thick sections were cut
and used for all stainings. For examining renal histology,
sections were stained with periodic acid-Schiff reagents
after diastase digestion (PasD). Injury to tubules was
assessed (blinded) by determining the percentage of af-
fected tubules per 10 fields (magnification × 400) semi-
quantitatively on a scale from 0 to 4 (0 = 0%, 1 = < 25%,
2 = 25–50%, 3 = 50–75%, and 4 = > 75%) according to
the following criteria: tubular dilatation, epithelial sim-
plification, and interstitial expansion in the cortex. For
immunohistochemistry, sections were stained with
FITC-labelled anti-mouse Ly-6G (Pharmingen, BD Bio-
sciences, Alphen a/d Rijn, The Netherlands), rat anti-
mouse F4/80 (Serotec, Oxford, UK), rabbit anti-mouse
active caspase-3 (Cell Signaling Technology, Beverly,
MA, USA), rabbit anti-human Ki67 (Neomarkers, Fre-
mont, CA, USA), rabbit polyclonal to collagen type I
(GeneTex, Irvine, CA, USA), or mouse anti-human
αSMA (DAKO, Heverlee, Belgium) to detect granulo-
cytes, macrophages, apoptosis, proliferation, collagen
type I, and myofibroblasts respectively. The number of
Ly6 positive cells and the number of caspase-3 and Ki67
positive TEC was counted in 10 non-overlapping fields
(magnification × 400) in a blinded manner. The percent-
age of positive staining for F4/80, collagen type I, total
collagen and αSMA in obstructed kidneys was analysed
using a computer-assisted digital analysis program
(Image Pro-plus®, Media Cybernetics). At least 15 visual
fields were sampled from the cortex of each kidney
(magnification × 20).

Statistical analyses
All statistical analyses were performed using GraphPad
Prism 5 software (San Diego, CA, USA). Data were
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analysed using the non-parametric Mann-Whitney U-test.
Results are expressed as mean ± standard error of the mean
(SEM). P < 0.05 was considered statistically significant.

Results
The role of NOD1 and NOD2 in CKD was investigated
using the mouse model UUO. First we analysed the
expression of NOD1 and NOD2 mRNA in WT kidney
at several time points after UUO. We found expression
of both transcripts in the kidney (Fig. 1), which were not
altered during the development of obstructive nephropa-
thy. Tubular injury, as assessed by scoring PAS-D-

stained kidney sections, increased markedly after UUO
with a similar degree of damage in WT and NOD1/2
DKO at all time points examined (Fig. 2a, c). In line with
the injury score, there were no differences in KIM-1 ex-
pression between the WT and the KO mice at all time
points (Fig. 2b). KIM-1 was declined at day 14 of UUO
possibly as an adaptation to prevent or slow down KIM-
1 mediated chronic inflammation and renal fibrosis, as
described previously [23]. Tubulointerstitial injury in
obstructed kidneys can result in an imbalance between
TEC apoptosis and proliferation. Apoptosis and prolifer-
ation of TEC was increased at all investigated time

Fig. 1 Renal expression of NOD1 (a) and NOD2 (b) after 0, 3, 7, and 14 days following obstruction. Gene expression was normalized towards the
reference gene TBP. Data are expressed as mean ± SEM. N = 9/group

Fig. 2 Renal injury in WT (white bars) and NOD1/2 DKO (black bars) mice after 0, 3, 7, and 14 days following obstruction. Renal damage
was evaluated by blinded scoring of the necrotic tubules in PAS-D-stained sections (a, c) and by measuring the mRNA expression of
KIM-1 (b) in total kidney homogenates. Data are expressed as mean ± SEM. Results were analysed with the non-parametric two-tailed
Mann-Whitney U-test. *P < 0.05. N = 9/group
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points after obstruction (Fig. 3). However, no difference
between WT and NOD1/2 DKO mice was observed. Fi-
brosis was determined by collagen type I (Fig. 4a) and
total collagen deposition (Additional file 2: Figure S2). In
both WT and NOD1/2 DKO obstructed kidneys fibrosis
increased progressively, however no difference between
the WT and NOD1/2 DKO mice was observed. Next we
analysed the amount of myofibroblasts by αSMA immu-
nohistochemistry (Fig. 4b). In line with tubular injury
and fibrosis, the amount of myofibroblasts increased
after UUO. Although myofibroblast accumulation was
lower in NOD1/2 DKO mice 3 days following ureteral
obstruction compared to WT mice, no differences were
found after 7 and 14 days (Fig. 4b). One of the early

events in progressive renal injury is the induction of che-
mokines and the subsequent recruitment of inflamma-
tory cells. The granulocyte chemoattractant KC (Fig. 5a)
and the monocyte chemoattractant MCP-1 (Fig. 5b) in-
creased significantly following obstruction in both WT
and NOD1/2 DKO kidneys. Except for a slight but sig-
nificant higher MCP-1 level in kidneys from NOD1/2
DKO mice compared with WT 7 days following obstruc-
tion, no difference in KC and MCP-1 levels were ob-
served between the WT and NOD1/2 DKO mice. The
influx of granulocytes (Fig. 5c, e) and accumulation of
macrophages (Fig. 5d, f ) increased in the obstructed WT
and NOD1/2 DKO kidneys, yet there were no differ-
ences in these parameters between the WT and NOD1/2

Fig. 3 Apoptosis and proliferation of TECs in WT (white bars) and NOD1/2 DKO (black bars) mice after 0, 3, 7, and 14 days following obstruction.
The amount of apoptotic TEC was determined by scoring caspase-3+ TEC (a, c) and the amount of proliferating TEC (b, d) was determined by
scoring Ki67+ TEC. Data are expressed as mean ± SEM. N = 9/group
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DKO mice, 3 and 14 days post UUO. Seven days follow-
ing obstruction there was a slight but significant de-
crease in granulocyte influx and a significant increase in
macrophage accumulation in NOD1/2 DKO kidneys
compared with WT kidneys. To get more insight in the
activation of the NF-kB signaling pathway, we measured
the downstream cytokines IL-1b and TNF-α in total kid-
ney homogenates. This revealed no significant differ-
ences between the WT and NOD1/2 DKO mice, expect
for IL-1b day 3 (Additional file 3: Figure S3). Together
these results reveal that there are no or minor changes

in the inflammatory response, renal damage and fibrosis
following CKD induced by ureteral obstruction in
NOD1/2 DKO mice compared with WT mice.

Discussion
To investigate the role of NOD1 and NOD2 in chronic
renal inflammation, injury and fibrosis we subjected
NOD1/2 DKO and WT mice at various time points to
UUO. UUO initiates a sequence of events in the
obstructed kidney, including interstitial inflammation
and TEC death, ultimately leading to renal fibrosis which

Fig. 4 Renal fibrosis in WT (white bars) and NOD1/2 DKO (black bars) mice after 0, 3, 7, and 14 days following obstruction. Collagen type I deposition
in kidneys was determined by Collagen type I staining and digitally analysed (a, d). Myofibroblast accumulation in kidneys was assessed by αSMA
staining and digitally analysed (b, c). Data are expressed as mean ± SEM. Results were analysed with the non-parametric two-tailed Mann-Whitney
U-test. *P < 0.05. N = 9/group
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is the final common pathway for numerous forms of
progressive renal disease. Recently, the role of the PRRs
TLR2, TLR9, TLR4 and NLRP3 in progressive renal in-
jury was investigated. Although TLR2 initiates the

inflammatory response during obstructive nephropathy,
it does not play a significant role in the development of
renal progressive injury and fibrosis [3, 24]. Similarly,
TLR9 was not involved in the pathogenesis of UUO

Fig. 5 Renal inflammation in WT (white bars) and NOD1/2 DKO (black bars) mice after 0, 3, 7, and 14 days following obstruction. KC (a) and
MCP-1 (b) were measured in total kidney homogenates with specific ELISAs. Influx of granulocytes was determined by scoring Ly6+ cells (c, e).
Influx of macrophages was assessed by F4/80 staining which was digitally analysed (d, f). Data are expressed as mean ± SEM. Results were
analysed with the non-parametric two-tailed Mann-Whitney U-test. *P < 0.05. N = 9/group
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[24]. On the other hand, TLR4 attenuates tubular dam-
age and does contribute to renal fibrosis during ob-
structive nephropathy as demonstrated by an increased
injury score and decreased collagen deposition in TLR4-
deficient mice [20, 25]. Other work implied a central
role for NLRP3 in renal inflammation, fibrosis and tubu-
lar damage at different phases of UUO [19, 21]. Appar-
ently, different PRR members have unique response
during obstructive nephropathy that lead to a profoundly
different outcome of local injury and tubulointerstitial
inflammation and fibrosis.
From our study we conclude that NOD1 and NOD2

do not play a significant role in the development of
tubulointerstitial fibrosis and inflammation nor in the
progression of renal damage after UUO-induced injury.
No differences were observed between WT and NOD1/2
DKO obstructed kidneys regarding tubular injury score,
apoptosis, proliferation and myofibroblast accumulation.
A marginal effect of NOD1/2 deficiency could be
detected in the inflammatory response during obstruct-
ive nephropathy. Slightly more MCP-1 and concomitant
increased macrophage accumulation was observed in the
NOD1/2 DKO kidney 7 days following obstruction,
while granulocyte influx was lower at this time point.
The majority of infiltrating leukocytes into the UUO-
damaged kidney are macrophages, which produce cyto-
kines responsible for tubular apoptosis and fibroblast
proliferation and activation. However, enhanced macro-
phage accumulation did not affect the progression of
renal fibrosis in NOD1/2 DKO mice. In another study
on progressive kidney disease, namely diabetes, it was
shown that NOD2 is upregulated and promoted the
transcription of extracellular matrix genes and renal in-
jury by inducing inflammation and podocyte insulin
resistance [18]. Moreover, in sepsis- and ischemia-
induced acute kidney disease models, NOD1/2 DKO
mice were demonstrated to be protected against renal
disease [10, 13]. Apparently, as it was the case for TLR2
[3, 26], NOD1 and NOD2 are involved in the initiation
of inflammation but do not necessarily contribute to fur-
ther renal damage and fibrosis. Considering that we
found no difference between WT and NOD1/2 DKO
mice in renal pathology, one could speculate that despite
their structural and functional similarities with other
PRRs, NOD1 and NOD2 are not activated by DAMPs
that are released after UUO. This would be in line with
current literature in which solely bacterial ligands and
not DAMPs are described to activate NOD1 and NOD2.
We anticipate that the difference in renal pathology
between WT and NOD1/2DKO mice in the renal ische-
mia reperfusion injury model might be due to transloca-
tion of bacterial products across the leaky intestinal
barrier that activate NOD1/2 resulting in inflammation-
associated nephropathy. The phenomenon of intestinal

barrier disruption is known to occur after renal ischemia
reperfusion injury [27] but is not described for UUO.
This study however, has some limitations which have

to be pointed out. By using double knockout mice we
cannot rule out the possibility that either NOD1 or
NOD2 play a different role in UUO and compensate
each other. Alternatively, the function of NOD1 or
NOD2 might be masked in our knockout model by
redundancy or compensatory mechanism. Our experi-
ments tested moreover only unilateral ureteral obstruc-
tion with its own advantages and limitations [28] and no
other animal models of chronic kidney disease and fibro-
sis. Other possible roles of NOD1/NOD2 in these disor-
ders that may be activated under different circumstances
remain therefore to be tested.
Taken together, our data do not show a functional role

for NOD1/2 in kidney injury and fibrosis following
chronic kidney disease induced by ureteral obstruction
and suggest that similar to infection, different forms of
sterile kidney disease will be sensed by different PRRs
triggering different signalling pathways which culminate
in different kidney disease outcomes.

Conclusion
Together these results reveal that there are no or
minor changes in the inflammatory response, renal
damage and fibrosis following obstructive nephropathy
induced by ureteral obstruction in NOD1/2 DKO
mice compared with WT mice.

Additional files

Additional file 1: Figure S1. The genotype of NOD1/2 DKO mice.
Genomic DNA from mice was amplified by PCR with specific primers to
detect the disrupted sequences on a 1% agarose gel with a 100 bp
marker. First 5 bands are the KO mice and the last bands are the WT
mice in A and B. N = 5/3 per group. (TIFF 12868 kb)

Additional file 2: FigureS2. Total collagen in kidneys of WT (white bars)
and NOD1/2 DKO (black bars) mice after 0, 3, 7, and 14 days following
obstruction. Total collagen was assessed by Picro Sirius Red staining
which was digitally analysed (A, B). Data are expressed as mean ± SEM.
N = 9/group. (TIFF 1068 kb)

Additional file 3: Figure S3. Renal inflammation in WT (white bars) and
NOD1/2 DKO (black bars) mice after 0, 3, 7, and 14 days following
obstruction. IL-1b (A) and TNF-α (B) were measured in total kidney ho-
mogenates with specific ELISAs. Data are expressed as mean ± SEM. Re-
sults were analysed with the non-parametric two-tailed Mann-Whitney U-
test. *P < 0.05. N = 9/group. (TIFF 2728 kb)

Abbreviations
CKD: Chronic kidney disease; DAMP: Danger associated molecular patterns;
DKO: Double deficient; HMGB1: High-mobility group box 1; IRI: Ischemia
reperfusion injury; NLRs: NOD-like receptors; PAMP: Pathogen associated
molecular patterns; PGN: Peptidoglycan; PRRs: Pattern recognition receptors;
SEM: Standard error of the mean; TEC: Tubular epithelial cell; TLRs: Toll-like
receptors; UUO: Unilateral ureteral obstruction; WT: Wild type
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