60 research outputs found
Predictive factors of urinary tract infections among the oldest old in the general population. a population-based prospective follow-up study
<p>Abstract</p> <p>Background</p> <p>Urinary tract infections (UTI) are common among the oldest old and may lead to a few days of illness, delirium or even to death. We studied the incidence and predictive factors of UTI among the oldest old in the general population.</p> <p>Methods</p> <p>The Leiden 85-plus Study is a population-based prospective follow-up study of 86-year-old subjects in Leiden, The Netherlands. Information on the diagnosis of UTI was obtained annually during four years of follow-up from the medical records and interviews of treating physicians. A total of 157 men and 322 women aged 86 years participated in the study. Possible predictive factors were collected at baseline, including history of UTI between the age of 85 and 86 years, aspects of functioning (cognitive impairment (Mini-Mental State Examination (MMSE) < 19), presence of depressive symptoms (Geriatric Depression Scale (GDS) > 4), disability in activities of daily living (ADL)), and co-morbidities.</p> <p>Results</p> <p>The incidence of UTI from age 86 through 90 years was 11.2 (95% confidence interval (CI) 9.4, 13.1) per 100 person-years at risk. Multivariate analysis showed that history of UTI between the age of 85 and 86 years (hazard ratio (HR) 3.4 (95% CI 2.4, 5.0)), impaired cognitive function (HR 1.9 (95% CI 1.3, 2.9)), disability in daily living (HR 1.7 (95% CI 1.1, 2.5)) and urine incontinence (HR 1.5 (95% CI 1.0, 2.1)) were independent predictors of an increased incidence of UTI from age 86 onwards.</p> <p>Conclusions</p> <p>Within the oldest old, a history of UTI between the age of 85 and 86 years, cognitive impairment, ADL disability and urine incontinence are independent predictors of developing UTI. These predictive factors could be used to target preventive measures to the oldest old at high risk of UTI.</p
ApoE Plasma Levels and Risk of Cardiovascular Mortality in Old Age
BACKGROUND: The ɛ2, ɛ3, and ɛ4 alleles of the apolipoprotein E gene (APOE) encode three isoforms, apoE2, E3, and E4, respectively. The apoE isoforms circulate in different plasma concentrations, but plasma concentrations of the same isoform also differ between individuals. Whereas the isoforms have been associated with cardiovascular disease, the relation between plasma apoE levels and cardiovascular disease is unknown. METHODS AND FINDINGS: We assessed APOE genotypes, plasma levels of apoE, cardiovascular risk factors, and mortality in a population-based sample of 546 individuals aged 85 y who participated in the Leiden 85-plus Study and were prospectively followed for specific causes of death for 5 y. Participants in the highest tertile of apoE levels suffered a twofold-increased risk of cardiovascular mortality (hazard ratio compared to lowest tertile, 2.08; 95% confidence interval [CI], 1.30 to 3.33). Among the 324 participants with the ɛ3ɛ3 genotype, the hazard from cardiovascular disease was threefold increased (highest versus lowest tertile 3.01; 95% CI 1.60 to 5.66), with similar estimates for men and women. Other causes of death were not increased significantly. Plasma levels of apoE in ɛ3ɛ3 participants were positively correlated with total cholesterol ( p < 0.001), low-density lipoprotein cholesterol ( p < 0.001) and triglycerides ( p < 0.001) and negatively with high-density lipoprotein cholesterol levels ( p = 0.010). Adjustment for plasma lipids did not change the hazard ratios, whereas interaction was absent. The risk associated with high levels of apoE, however, was strongest in participants from the lowest tertile of C-reactive protein (CRP) levels and absent in those from the highest tertile ( p (interaction) < 0.001). Among participants from the lowest tertile of CRP levels, those with a high apoE levels had a significantly steeper increase in CRP than those with low apoE levels ( p = 0.020). Similar cardiovascular mortality risks as in ɛ3ɛ3 participants were found in ɛ2 and ɛ4 carriers. CONCLUSIONS: In old age, high plasma apoE levels precede an increase of circulating CRP and strongly associates with cardiovascular mortality, independent of APOE genotype and plasma lipids
Post-2020 climate agreements in the major economies assessed in the light of global models
Integrated assessment models can help in quantifying the implications of international climate agreements and regional climate action. This paper reviews scenario results from model intercomparison projects to explore different possible outcomes of post-2020 climate negotiations, recently announced pledges and their relation to the 2 °C target. We provide key information for all the major economies, such as the year of emission peaking, regional carbon budgets and emissions allowances. We highlight the distributional consequences of climate policies, and discuss the role of carbon markets for financing clean energy investments, and achieving efficiency and equity
Tomato: a crop species amenable to improvement by cellular and molecular methods
Tomato is a crop plant with a relatively small DNA content per haploid genome and a well developed genetics. Plant regeneration from explants and protoplasts is feasable which led to the development of efficient transformation procedures.
In view of the current data, the isolation of useful mutants at the cellular level probably will be of limited value in the genetic improvement of tomato. Protoplast fusion may lead to novel combinations of organelle and nuclear DNA (cybrids), whereas this technique also provides a means of introducing genetic information from alien species into tomato. Important developments have come from molecular approaches. Following the construction of an RFLP map, these RFLP markers can be used in tomato to tag quantitative traits bred in from related species. Both RFLP's and transposons are in the process of being used to clone desired genes for which no gene products are known. Cloned genes can be introduced and potentially improve specific properties of tomato especially those controlled by single genes. Recent results suggest that, in principle, phenotypic mutants can be created for cloned and characterized genes and will prove their value in further improving the cultivated tomato.
Aberrant function of the C-terminal tail of HIST1H1E Aacelerates cellular senescence and causes premature aging
Histones mediate dynamic packaging of nuclear DNA in chromatin, a process that is precisely controlled to guarantee efficient compaction of the genome and proper chromosomal segregation during cell division and to accomplish DNA replication, transcription, and repair. Due to the important structural and regulatory roles played by histones, it is not surprising that histone functional dysregulation or aberrant levels of histones can have severe consequences for multiple cellular processes and ultimately might affect development or contribute to cell transformation. Recently, germline frameshift mutations involving the C-terminal tail of HIST1H1E, which is a widely expressed member of the linker histone family and facilitates higher-order chromatin folding, have been causally linked to an as-yet poorly defined syndrome that includes intellectual disability. We report that these mutations result in stable proteins that reside in the nucleus, bind to chromatin, disrupt proper compaction of DNA, and are associated with a specific methylation pattern. Cells expressing these mutant proteins have a dramatically reduced proliferation rate and competence, hardly enter into the S phase, and undergo accelerated senescence. Remarkably, clinical assessment of a relatively large cohort of subjects sharing these mutations revealed a premature aging phenotype as a previously unrecognized feature of the disorder. Our findings identify a direct link between aberrant chromatin remodeling, cellular senescence, and accelerated aging
Recommended from our members
Attribution: how is it relevant for loss and damage policy and practice?
Attribution has become a recurring issue in discussions about Loss and Damage (L&D). In this highly-politicised context, attribution is often associated with responsibility and blame; and linked to debates about liability and compensation. The aim of attribution science, however, is not to establish responsibility, but to further scientific understanding of causal links between elements of the Earth System and society. This research into causality could inform the management of climate-related risks through improved understanding of drivers of relevant hazards, or, more widely, vulnerability and exposure; with potential benefits regardless of political positions on L&D. Experience shows that it is nevertheless difficult to have open discussions about the science in the policy sphere. This is not only a missed opportunity, but also problematic in that it could inhibit understanding of scientific results and uncertainties, potentially leading to policy planning which does not have sufficient scientific evidence to support it. In this chapter, we first explore this dilemma for science-policy dialogue, summarising several years of research into stakeholder perspectives of attribution in the context of L&D. We then aim to provide clarity about the scientific research available, through an overview of research which might contribute evidence about the causal connections between anthropogenic climate change and losses and damages, including climate science, but also other fields which examine other drivers of hazard, exposure, and vulnerability. Finally, we explore potential applications of attribution research, suggesting that an integrated and nuanced approach has potential to inform planning to avert, minimise and address losses and damages. The key messages are
In the political context of climate negotiations, questions about whether losses and damages can be attributed to anthropogenic climate change are often linked to issues of responsibility, blame, and liability.
Attribution science does not aim to establish responsibility or blame, but rather to investigate drivers of change.
Attribution science is advancing rapidly, and has potential to increase understanding of how climate variability and change is influencing slow onset and extreme weather events, and how this interacts with other drivers of risk, including socio-economic drivers, to influence losses and damages.
Over time, some uncertainties in the science will be reduced, as the anthropogenic climate change signal becomes stronger, and understanding of climate variability and change develops.
However, some uncertainties will not be eliminated. Uncertainty is common in science, and does not prevent useful applications in policy, but might determine which applications are appropriate. It is important to highlight that in attribution studies, the strength of evidence varies substantially between different kinds of slow onset and extreme weather events, and between regions. Policy-makers should not expect the later emergence of conclusive evidence about the influence of climate variability and change on specific incidences of losses and damages; and, in particular, should not expect the strength of evidence to be equal between events, and between countries.
Rather than waiting for further confidence in attribution studies, there is potential to start working now to integrate science into policy and practice, to help understand and tackle drivers of losses and damages, informing prevention, recovery, rehabilitation, and transformation
- …