7 research outputs found

    Exploring the Effect of Hierarchical Porosity in BEA Zeolite in Friedel-Crafts Acylation of Furan and Benzofuran

    Get PDF
    Hierarchical BEA zeolite was prepared through desilication or desilication followed by acid treatment. The catalytic performance of BEA zeolite samples was evaluated using Friedel-Crafts acylations with two substrates of different molecular sizes, furan (5.7 Å) and benzofuran (6.9 Å), in the presence of acetic anhydride as acylating agent. The application of the simplified Langmuir-Hinshelwood kinetic model showed that the size of the substrate leads to different catalytic activities, with improved rate constant and turnover frequency (TOF) solely in the presence of benzofuran for both desilicated and further acid treated samples. The mesopores developed during the zeolite treatments have an important role as transportation channels by reducing diffusion limitations. The application of Quantitative Structure–Property Relationships (QSPR) allowed the finding of the most relevant properties of the zeolite and substrate with impact on the catalytic parameters.publishe

    The Influence of Carbon-Carbon Multiple Bonds on the Solvolyses of Tertiary Alkyl Halides: a Grunwald-Winstein Analysis

    Get PDF
    The influence of carbon-carbon multiple bonds on the solvolyses of 3-chloro-3-methylbutyne (1), 2-chloro-2-phenylpropane (2), 2-bromo-2-methyl-1-phenylpropane (3), 4-chloro-4-methyl-2-pentyne (4) and 2-chloro-2-methylbutane (5) is critically evaluated through the extended Grunwald-Winstein equation. Substrates 1, 3 and 5 lead to correlations with unexpected negative sensitivity, h, to changes in the aromatic ring parameter, I. It is claimed that I is not a pure parameter, reflecting also some solvent nucleophilicity, NOTs, character. In substrates 2 and 4 the possibility of rearside solvation is reduced due to steric hindrance and/or cation stabilization and the best found correlations involve only the solvent ionizing power, Y, and I

    Probing Substrate/Catalyst Effects Using QSPR Analysis on Friedel-Crafts Acylation Reactions over Hierarchical BEA Zeolites

    No full text
    Attempts to optimize heterogeneous catalysis often lack quantitative comparative analysis. The use of kinetic modelling leads to rate (k) and relative sorption equilibrium constants (K), which can be further rationalized using Quantitative Structure-Property Relationships (QSPR) based on Multiple Linear Regressions (MLR). Friedel-Crafts acylation using commercial and hierarchical BEA zeolites as heterogeneous catalysts, acetic anhydride as the acylating agent, and a set of seven substrates with different sizes and chemical functionalities were herein studied. Catalytic results were correlated with the physicochemical properties of substrates and catalysts. From this analysis, a robust set of equations was obtained allowing inferences about the dominant factors governing the processes. Not entirely surprising, the rate and sorption equilibrium constants were found to be explained in part by common factors but of opposite signs: higher and stronger adsorption forces increase reaction rates, but they also make the zeolite active sites less accessible to new reactant molecules. The most relevant parameters are related to the substrates’ molecular size, which can be associated with different reaction steps, namely accessibility to micropores, diffusion capacity, and polarizability of molecules. The relatively large set of substrates used here reinforces previous findings and brings further insights into the factors that hamper/speed up Friedel-Crafts reactions in heterogeneous media

    Exploring the Effect of Hierarchical Porosity in BEA Zeolite in Friedel-Crafts Acylation of Furan and Benzofuran

    No full text
    Hierarchical BEA zeolite was prepared through desilication or desilication followed by acid treatment. The catalytic performance of BEA zeolite samples was evaluated using Friedel-Crafts acylations with two substrates of different molecular sizes, furan (5.7 Å) and benzofuran (6.9 Å), in the presence of acetic anhydride as acylating agent. The application of the simplified Langmuir-Hinshelwood kinetic model showed that the size of the substrate leads to different catalytic activities, with improved rate constant and turnover frequency (TOF) solely in the presence of benzofuran for both desilicated and further acid treated samples. The mesopores developed during the zeolite treatments have an important role as transportation channels by reducing diffusion limitations. The application of Quantitative Structure–Property Relationships (QSPR) allowed the finding of the most relevant properties of the zeolite and substrate with impact on the catalytic parameters
    corecore