45 research outputs found

    Vibration Analysis of Material Size-Dependent CNTs Using Energy Equivalent Model

    Get PDF
    This study presents a modified continuum model to investigate the vibration behavior of single and multi-carbon nanotubes (CNTs). Two parameters are exploited to consider size dependence; one derived from the energy equivalent model and the other from the modified couple stress theory. The energy equivalent model, derived from the basis of molecular mechanics, is exploited to describe size-dependent material properties such as Young and shear moduli for both zigzag and armchair CNT structures. A modified couple stress theory is proposed to capture the microstructure size effect by assisting material length scale. A modified kinematic Timoshenko nano-beam including shear deformation and rotary inertia effects is developed. The analytical solution is shown and verified with previously published works. Moreover, parametric studies are performed to illustrate the influence of the length scale parameter, translation indices of the chiral vector, and orientation of CNTs on the vibration behaviors. The effect of the number of tube layers on the fundamental frequency of CNTs is also presented. These findings are helpful in mechanical design of high-precision measurement nano-devices manufactured from CNTs

    Identification of Candidate Genes and Genomic Regions Associated with Adult Plant Resistance to Stripe Rust in Spring Wheat

    Get PDF
    Wheat stripe rust (caused by Puccinia striiformis f. sp. tritici) is a major disease that damages wheat plants and affects wheat yield all over the world. In recent years, stripe rust became a major problem that affects wheat yield in Egypt. New races appeared and caused breakdowns in the resistant genotypes. To improve resistance in the Egyptian genotypes, new sources of resistance are urgently needed. In the recent research, a set of 95 wheat genotypes collected from 19 countries, including Egypt, were evaluated for their resistance against the Egyptian race(s) of stripe rust under field conditions in the two growing seasons 2018/2019 and 2019/2020. A high genetic variation was found among the tested genotypes. Single marker analysis was conducted using a subset of 71 genotypes and 424 diversity array technology (DArT) markers, well distributed across the genome. Out of the tested markers, 13 stable markers were identified that were significantly associated with resistance in both years (p-value ≤ 0.05). By using the sequence of the DArT markers, the chromosomal position of the significant DArT markers was detected, and nearby gene models were identified. Two markers on chromosomes 5A and 5B were found to be located within gene models functionally annotated with disease resistance in plants. These two markers could be used in markerassisted selection for stripe rust resistance under Egyptian conditions. Two German genotypes were carrying the targeted allele of all the significant DArT markers associated with stripe rust resistance and could be used to improve resistance under Egyptian conditions

    Buckling Analysis of CNTRC Curved Sandwich Nanobeams in Thermal Environment

    Get PDF
    none6siThis paper presents a mathematical continuum model to investigate the static stability buckling of cross-ply single-walled (SW) carbon nanotube reinforced composite (CNTRC) curved sandwich nanobeams in thermal environment, based on a novel quasi-3D higher-order shear deformation theory. The study considers possible nano-scale size effects in agreement with a nonlocal strain gradient theory, including a higher-order nonlocal parameter (material scale) and gradient length scale (size scale), to account for size-dependent properties. Several types of reinforcement material distributions are assumed, namely a uniform distribution (UD) as well as X- and O- functionally graded (FG) distributions. The material properties are also assumed to be temperature-dependent in agreement with the Touloukian principle. The problem is solved in closed form by applying the Galerkin method, where a numerical study is performed systematically to validate the proposed model, and check for the effects of several factors on the buckling response of CNTRC curved sandwich nanobeams, including the reinforcement material distributions, boundary conditions, length scale and nonlocal parameters, together with some geometry properties, such as the opening angle and slenderness ratio. The proposed model is verified to be an effective theoretical tool to treat the thermal buckling response of curved CNTRC sandwich nanobeams, ranging from macroscale to nanoscale, whose examples could be of great interest for the design of many nanostructural components in different engineering applications.openAhmed Amine Daikh; Mohammed Sid Ahmed Houari; Behrouz Karami; Mohamed A. Eltaher; Rossana Dimitri; Francesco TornabeneAmine Daikh, Ahmed; Sid Ahmed Houari, Mohammed; Karami, Behrouz; Eltaher, Mohamed A.; Dimitri, Rossana; Tornabene, Francesc

    Irrigation Practices and Their Effects on Soil Quality and Soil Characteristics in Arid Lands: A Comprehensive Geomatic Analysis

    Get PDF
    Comprehension of the long-term effects of irrigation on basic soil characteristics and quality is essential for sustainable land management and agricultural production, particularly in arid regions where water availability is limited. This study aimed to investigate long-term irrigation effects on soil quality, soil organic carbon (SOC), and nitrogen (N) stocks in the arid lands of Egypt. Seventy soil samples were collected and analyzed to determine various soil properties. A soil quality index (SQI), SOC, and N stocks were computed. ANOVA and PCA analyses were used to identify signifiant differences between alluvial soils in the southwest part of the investigated area and coastal marine soils in the northeast of the study area. The results demonstrated that most of the studied soil parameters had signifiantly greater values in alluvial compared to coastal marine soils. Long-term irrigation led to an 8.00% increase in SOC and 7.22% increase in N stocks compared to coastal marine soils production. Furthermore, a 39.53% increase was found in the SQI upon longterm irrigation practice. These results suggest that shifting from rain-fed in coastal marine areas to irrigated production systems in alluvial filds can improve soil quality, SOC, and N stocks. Therefore, further studies are required to investigate the impact of additional factors, such as irrigation method and salinity status of sub-surface soil layers, to enhance agricultural productivity and sustainable land use

    A detailed hydrothermal investigation of a helical micro double-tube heat exchanger for a wide range of helix pitch length

    Get PDF
    The present study was numerically inquired the heat transfer performance and fluid flow characteristic of a helical micro double-tube heat exchanger (HMDTHX) using the finite volume method. The tube length was considered to be constantly equal to 30 mm, and 12 different configurations were modeled by changing in turn number and pitch length (P) for Reynolds numbers of 50, 100, 150, and 200. The findings indicated that the heat transfer would enhance by applying any helix angle in the straight tube. However, it had an optimum point which varied by Reynolds number (Re). Rising Re caused overall heat transfer coefficient (OHTC), pressure drop, and pumping power augment for all cases. Increasing P in overall reduced OHTC, pressure drop, and pumping power which had different maximum points between P = 0.5 to 3. Maximum overall heat transfer coefficient (OHTC) enhancement was equal to 45% for Re = 200 and P = 2. Also, maximum effectiveness was 11.5% for P = 2 and Re = 200. Moreover, a 42% maximum increment was achieved for pressure drop, pumping power, and friction factor at Re = 200 and P = 2. Shear stress for Re = 100 to 200 showed that the values are almost the same for P = 0.5 and 1. Then by increasing P, the shear stress decreases. While, for Re = 50, a maximum is seen at P = 2. The temperature distribution was indicated that the maximum temperature of the straight tube and helical tube are the same, but the difference is in the average temperature, which was 3.2 K between straight and helical tubes. Finally, by investigating the velocity contour, it was determined that a secondary flow through the HMDTHX, affected by centrifugal force, was existed, enhancing the fluid flow turbulency and heat transfer rate

    Dynamic Analysis of Sigmoid Bidirectional FG Microbeams under Moving Load and Thermal Load: Analytical Laplace Solution

    No full text
    This paper presents for the first time a closed-form solution of the dynamic response of sigmoid bidirectional functionally graded (SBDFG) microbeams under moving harmonic load and thermal environmental conditions. The formulation is established in the context of the modified couple stress theory to integrate the effects of microstructure. On the basis of the elasticity theory, nonclassical governing equations are derived by using Hamilton’s principle in combination with the parabolic higher-order shear deformation theory considering the physical neutral plane concept. Sigmoid distribution functions are used to describe the temperature-dependent thermomechanical material of bulk continuums of the beam in both the axial and thickness directions, and the gradation of the material length scale parameter is also considered. Linear and nonlinear temperature profiles are considered to present the environmental thermal loads. The Laplace transform is exploited for the first time to evaluate the closed-form solution of the proposed model for a simply supported (SS) boundary condition. The solution is verified by comparing the predicted fundamental frequency and dynamic response with the previously published results. A parametric study is conducted to explore the impacts of gradient indices in both directions, graded material length scale parameters, thermal loads, and moving speed of the acted load on the dynamic response of microbeams. The results can serve as a principle for evaluating the multi-functional and optimal design of microbeams acted upon by a moving load

    Dynamic Analysis of Sigmoid Bidirectional FG Microbeams under Moving Load and Thermal Load: Analytical Laplace Solution

    No full text
    This paper presents for the first time a closed-form solution of the dynamic response of sigmoid bidirectional functionally graded (SBDFG) microbeams under moving harmonic load and thermal environmental conditions. The formulation is established in the context of the modified couple stress theory to integrate the effects of microstructure. On the basis of the elasticity theory, nonclassical governing equations are derived by using Hamilton’s principle in combination with the parabolic higher-order shear deformation theory considering the physical neutral plane concept. Sigmoid distribution functions are used to describe the temperature-dependent thermomechanical material of bulk continuums of the beam in both the axial and thickness directions, and the gradation of the material length scale parameter is also considered. Linear and nonlinear temperature profiles are considered to present the environmental thermal loads. The Laplace transform is exploited for the first time to evaluate the closed-form solution of the proposed model for a simply supported (SS) boundary condition. The solution is verified by comparing the predicted fundamental frequency and dynamic response with the previously published results. A parametric study is conducted to explore the impacts of gradient indices in both directions, graded material length scale parameters, thermal loads, and moving speed of the acted load on the dynamic response of microbeams. The results can serve as a principle for evaluating the multi-functional and optimal design of microbeams acted upon by a moving load

    Exact Solution of Nonlinear Behaviors of Imperfect Bioinspired Helicoidal Composite Beams Resting on Elastic Foundations

    No full text
    This paper presents exact solutions for the nonlinear bending problem, the buckling loads, and postbuckling configurations of a perfect and an imperfect bioinspired helicoidal composite beam with a linear rotation angle. The beam is embedded on an elastic medium, which is modeled by two elastic foundation parameters. The nonlinear integro-differential governing equation of the system is derived based on the Euler–Bernoulli beam hypothesis, von Kármán nonlinear strain, and initial curvature. The Laplace transform and its inversion are directly applied to solve the nonlinear integro-differential governing equations. The nonlinear bending deflections under point and uniform loads are derived. Closed-form formulas of critical buckling loads, as well as nonlinear postbuckling responses of perfect and imperfect beams are deduced in detail. The proposed model is validated with previous works. In the numerical results section, the effects of the rotation angle, amplitude of initial imperfection, elastic foundation constants, and boundary conditions on the nonlinear bending, critical buckling loads, and postbuckling configurations are discussed. The proposed model can be utilized in the analysis of bio-inspired beam structures that are used in many energy-absorption applications
    corecore