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Abstract. This study presents a modified continuum model to investigate the vibration behavior of single and 
multi-carbon nanotubes (CNTs). Two parameters are exploited to consider size dependence; one derived from the 
energy equivalent model and the other from the modified couple stress theory. The energy equivalent model, 
derived from the basis of molecular mechanics, is exploited to describe size-dependent material properties such as 
Young and shear moduli for both zigzag and armchair CNT structures. A modified couple stress theory is proposed 
to capture the microstructure size effect by assisting material length scale. A modified kinematic Timoshenko nano-
beam including shear deformation and rotary inertia effects is developed. The analytical solution is shown and 
verified with previously published works. Moreover, parametric studies are performed to illustrate the influence of 
the length scale parameter, translation indices of the chiral vector, and orientation of CNTs on the vibration 
behaviors. The effect of the number of tube layers on the fundamental frequency of CNTs is also presented. These 
findings are helpful in mechanical design of high-precision measurement nano-devices manufactured from CNTs. 

Keywords: Energy Equivalent Model; Modified Couple Stress Theory; Carbon Nanotube; Vibration of Timoshenko Nano 
Beam; Analytical Model. 

1. Introduction 

Carbon nanotubes (CNTs), discovered by Iijima [1], have received wide attention in many scientific disciplines such as 
material science, engineering, and physics, because of their outstanding properties. CNT is considered as one of the most 
resilient and strongest material known. Carbon nanostructures such as single and multi-walled carbon nanotubes, nanofibers 
and nanoparticles are used greatly in the field of nanotechnology. The mechanical properties of CNTs are functions of both 
micro- and macro-mechanics. These functions can be derived through calculating the variation of microscopic electronic 
energies by the equivalent continuum energies, Tu and Ou-Yang [2]. Two theoretical approaches, such as molecular dynamics 
and continuum mechanics, are used to describe the behavior of CNTs accurately. Although Molecular dynamics is the most 
popular one in describing CNTs behavior [3], it is computationally expensive. Nowadays, Continuum mechanics approach is 
the subject of much research in nano-mechanics due to their computational accuracy and simplicity as compared to those 
results given by the atomistic model by Chen et al. [4]. 

The nano-beam has been used widely in systems and devices modeling such as nano-wires, nano-probes, CNTs, atomic 
force microscope (AFM), nano-actuators, and nano-sensors. According to Eltaher et al. [5], the understanding the vibrational 
behavior of the nano-beam is essential in developing such structures due to their great potential engineering applications. 
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Recently, many studies showed that the small length scale effect missing in the conventional continuum should be considered 
in the modelling of nanostructures. To overcome the size dependency problem in conventional continuum models, nano-
continuum models were proposed including nonlocal theories as suggested by Eringen [6-8], the modified couple stress theory 
of [9-10], and the strain gradient theory [11-13]. All the above-mentioned theories described the length scale parameters as 
material constants. Conversely, the energy equivalent model, derived from combining molecular and continuum mechanics, 
described the properties of CNTs (i.e., Young’s modulus, shear modulus, and Poisson’s ratio) as size-dependent [14-17]. 

In 2005, Tserpes and Papanikos [18] proposed a 3D finite element model for single-walled carbon nanotubes (SWCNTs) 
that behave like space frame structures and determined their elastic moduli using both molecular and continuum mechanics. 
Wu et al. [14] presented the fundamental frequencies and mode shapes of SWCNTs numerically by using FE and Euler-
Bernoulli beam (EBB) kinematics. Shokrieh and Rafiee [19], and Shodja and Delfani [20] predicted the elastic moduli of 
graphene sheets and CNTs using a linkage between the molecular structure and the equivalent frame structure. Bogacz and 
Noga [21] studied free transverse vibration analysis of a toothed gear. Ghavamian et al. [22] applied FE method to determine 
the shear modulus of single- and multi-walled CNTs directly from torsion tests. Based on the modified strain gradient elasticity 
and Bernoulli-Euler beam theories, Akgoz and Civalek [23] investigated the buckling problem of linearly tapered micro-
columns. Feng et al. [24] predicted mechanical properties of carbon nano-springs by using molecular mechanics simulation. 
Within the Brenner interatomic potential and Fourier analysis, Pine et al. [25] exploited molecular dynamics to investigate 
flexural vibrational of SWCNTs with various lengths under different axial strains. Rafiee and Moghadam [26] conducted 
comprehensive review on the modeling and simulation of CNTs concentrating on buckling, vibrational, and thermal properties. 
Farrokhabadi et al. [27] investigated the effects of the Casimir force on the instability and adhesion of freestanding Cylinder–
Plate and Cylinder–Cylinder geometries. Brischetto [28] and Sakharova et al. [17] used three-dimensional FE modeling to 
evaluate the tensile and bending rigidities, and subsequently, Young’s moduli of non-chiral and chiral SWCNTs. Kiani [30] 
exploited Lennard-Jones potential function and nonlocal Rayleigh beam theory to investigate vibration behavior of orthogonal 
SWCNTs separated by van der Waals (vdW) forces.  

Stölken and Evans [30] experimentally showed that the mechanical properties of the micro- /nano-structures were from 
their macro-scale. Thus, modified continuum models were proposed to consider the size effect of tiny structures in nano-scale 
size. One of the well-known theories is the couple stress theory developed by Mindlin et al. [9, 11, & 31] and Toupin [10]. 
Besides, Yang et al. [12] presented a modified couple theory that included a symmetric couple stress tensor and involved only 
one length scale parameter. Ma et al. [32] studied bending and vibration behavior of microstructure-dependent Timoshenko 
nano-beams. Fu and Zhang [33] studied the buckling of size-dependent microtubules using a modified couple theory. Ke and 
Wang [34] investigated vibration and instability of fluid-conveying DWNTs based on the modified couple stress theory and the 
Timoshenko beam theory. Based on the modified couple stress theory, Ghayesh et al. [35] presented the nonlinear dynamics 
behavior of a micro-beam. On the other hand, Tounsi et al. [36] studied the thermal buckling characteristics of DWCNTs using 
the nonlocal Timoshenko beam model. Benguediab et al. [37] and Semmah et al. [38] studied chirality and scale effects on the 
mechanical buckling of zigzag DWCNTs. Results showed that the buckling load is overestimated by the local beam if the scale 
effect is ignored for long NTs. Bazehhour et al. [39] studied free vibration of high-speed rotating Timoshenko shaft effect of 
centrifugally induced axial force. The Timoshenko beam is more applicable for short and stubby shafts especially at high 
speeds. Besseghier et al. [40] exploited the Winkler-type model to simulate the interaction of the zigzag SWCNTs with a 
surrounding elastic medium. The relation between deflection amplitudes and resonant frequencies of the SWCNTs was derived 
through the harmonic balance method. Akgöz and Civalek [41] studied bending response of non-homogenous micro-beams 
embedded in an elastic medium based on the modified strain gradient elasticity theory and in conjunction with various beam 
theories. Eltaher et al. [42] presented the nonlocal FE model to investigat the dynamic behavior of SWCNT resonators. 

Fakhrabadi [43] presented a nonlinear dynamic behavior of CNTs nano-resonator using the couple stress theory and the 
Euler beam model. Akgöz and Civalek [44] illustrated static bending response of single-walled carbon nanotubes (SWCNTs) 
embedded in an elastic medium on the basis of higher-order shear deformation micro-beam models in conjunction with the 
modified strain gradient theory. Agwa and Eltaher [45] studied a surface effect on vibration behavior of carbyne nano-
mechanical resonators by using the Timoshenko nano-beam. Eltaher et al. [46] presented a review on mechanical behavior of 
the nonlocal CNTs model as nano-beams. Eltaher et al. [47] illustrated the nonlinear static behavior of size-dependent and 
material-dependent nonlocal CNTs by using the nonlocal differential form of Eringen and the energy equivalent method. 
Civalek and Demir [48] presented a simple nonlocal beam model to study the buckling response of protein microtubules by 
using the nonlocal continuum theory and the Finite element procedure. Hamed et al. [49] investigated vibration characteristics 
of both nonlinear symmetric power and sigmoid functionally graded (FG) nonlocal nano-beams by using a nonlocal elasticity. 
Hosseini and Rahmani [50] investigated the thermal buckling and natural frequency of a curved functionally graded (FG) 
nano-beam in a thermal environment based on the Eringen’s theory. Keivani et al. [51] studied the dynamic pull-in instability 
of cantilever nano-actuator fabricated from the conductive cylindrical nanowire with a circular cross-section under the 
presence of the Casimir force and surface effects. Sedighi [52] presented the impact of vibrational amplitude on the dynamic 
pull-in instability and fundamental frequency of actuated micro-beams by introducing the second order frequency–amplitude 
relationship. Keivani et al. [53, 54] exploited the modified couple stress theory to investigate the pull-in instability of paddle-
type and double-sided NEMS sensors under the accelerating force. Wang et al. [55] illustrated large amplitude free vibration of 
electrically actuated nano-beams with surface energy and thermal effects.  
    To the best authors known, the vibration behavior of SWCNTs accompanying with the energy equivalent method and the 
modified couple stress has not yet been investigated. Therefore, the present study is intended to fill this gap in the literature by 
considering the energy equivalent method along with the modified couple Timoshenko nano-beam that accounts for both 
moderate rotation and rotary inertia which have not been considered in Euler Bernoulli assumptions. The paper structure is 
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arranged as follows: Section 2 depicts the linkage between molecular mechanics and continuum mechanics. Section 3 presents 
the basic formulation and mathematical model of SWCNTs modeled by the Timoshenko couple stress nano-beam. The 
analytical closed form solution of a mathematical model is also derived in Section 3. In Section 4, model validation and 
numerical results that showed the effects of chirality for both zigzag and armchair structures on the dynamic characteristics of 
SWCNTs are presented and discussed. Concluding remarks are summarized in Section 5. 

2. Energy Equivalent Model of CNTs 

The mathematical model describes the relationship between molecular mechanics and continuum mechanics of SWCNTs. 
Based on the molecular mechanics, CNTs properties are functions of both chiral angles and nanotube diameters. The chiral 
vector used to describe the chiral angle can be defined as [14]: 

1 2  hC na m a 
  

 (1) 

   where 1a


and 2a


are the unit vectors, and the integer pair  , n m specifies the structure of carbon nanotubes. According to 
chiral vector ,hC


CNTs can be categorized as zigzag  ,0 ,n armchair  ,n n , and chiral  ,  or  0n m n structures. However, the 

radius of nanotube R can be depicted as a function of the integer pair  ,  n m as suggested by Yamabe [56]. 

 2 2
0 3

2

l n m nm
R



 
  (2) 

   where 0l =0.142 nm is the C-C bond length and n  is the translation index. Regarding Eq. (2), the armchair and zigzag 
nanotubes radii can be presented as 03 / 2nl   and 03 / 2nl  , respectively. Carbon atoms have specific bond lengths and 
bond angles in a 3D space. These bonds can be described in terms of a potential energy as [26]: 

L TU U U U U      (3) 

   where , , ,and  L TU U U U 
are bond stretching, angle variation, inversion, and torsion energies, respectively . In case of 

tension and bending of SWCNs, the most significant energies are the bond stretching and angle energies. Therefore, Eq. (3) can 
be simplified to [14, 19]: 

   221 1
  

2 2L i i j j
i j

U U U K dR C d       (4) 

in which iK is the stretching constant of the bond , ii dR is the elongation of the bond , ji C is the angle variance constant of the 

bond , jj d is the variance of bond angle .j Table 1 presents formulas for Young modulus, Poisson’s ratio and shear modulus 

as functions of geometrical dependent parameters [14, 57, & 58].  

The parameters used in the analysis of armchair and zigzag orientations of SWCNTs are: the effective thickness of CNTs 
t=0.258 nm, the forces constants / 2K = 46900 kcal/mol/nm2, and C/2= 63 kcal/mol/rad2. The effect of translation indices (n) 
on radii along with Young and shear moduli of both zigzag and armchair CNTs is illustrated in Fig. 1. As shown in this Fig., 
Young and shear moduli exhibit strong dependence on the translation index especially at smaller indices (n ≤10) and this 
dependence becomes weak for large indices (n >10). In addition, the moduli of the armchair structure approaches to the 
graphite moduli ( ,  g gE  ) faster than zigzag structure. 

Table 1. Young and shear moduli for armchair and zigzag CNTs. 
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According to Tu and Ou-Yang [2], the Young’s modulus of multi-walled carbon nanotubes (MWCNTs) can be expressed as 
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a function of SWCNTs parameters, layer number N , and layer distance h as suggested by Benguediab et al. [37]: 

N 1
MWCNT SWCNT

N t
E E

t h
h


 

 
(5) 

0 5 10 15 20
Translation index  n

0.5

0.6

0.7

0.8

0.9

1

1.1

Y
ou

n
g 

M
ou

lu
s,

 E
 (

T
Pa

)

0

0.1

0.2

0.3

0.4

0.5

0.6

Sh
ea

r 
M

ou
lu

s,
 

 (
T

P
a)

 
 

Fig. 1. Variation of Young and shear moduli versus the translation index (n). 

3. Problem Formulation 

According to the modified couple stress theory, the elastic strain energyU can be described as suggested by Ma et al. [32]: 

 
Ω

1
: :

2
U dv  σ ε m χ  (6) 

where Ω is the occupying region with a volume element ,dv σ, and m are a classical stress and couple stress tensors, 
ε and χ are the classical strain and curvature strain tensors. The constitutive equations of a modified couple stress can be 

written as: 

  I 2tr  σ ε ε  (7.a) 

22l m χ  (7.b) 

and subjected to the following geometrical fit conditions: 

   1

2

T     ε u u  (8.a) 

   1

2

T     χ θ θ  (8.b) 

 1
curl

2
θ u  (8.c) 

where and  are Lame’s constants, and  l is a material length scale parameter. Mathematically,  l is the square root of the 

fraction of the curvature modulus to the shear modulus. Physically,  l  is a property measuring the effect of the couple stress 
[9, 32, 59]. u and θ are the displacement and rotation vectors, respectively. Lame’s constants have the following relations: 

  1 1 2

E
 


 

 (9.a) 

 2 1

E





 (9.b) 

where E is the Young modulus and   is the Poisson’s ratio. According to the Timoshenko beam theory, the kinematics of 
displacement can be defined as: 

     0, , , ,u x z t u x t z x t   (10.a) 
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   0, , ,w x z t w x t  (10.b) 

where  , ,u x z t and  , ,W x z t are the displacement components in x an z directions,  0 ,u x t   and  0 ,w x t  are the x and 

z components of the displacement vector at z 0 , and  ,x t  is the angle of rotation of the cross-section around the y axis 

with respect to z axis, as shown in Fig 2. 

 
Fig. 2. Schematic representation of CNT beam. 

 
By substituting Eq. (10) into Eq (8), the nonzero strains, rotation, and curvature have the following relations: 
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 (11.c) 
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 (11.d) 

Nonzero normal ( )xx , shear ( ) xz , and couple ( ) xym stresses can be derived from Eqs. (7) as: 

    0  
2  2 xx xx

u
z

x x

               
 (12.a) 
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 (12.c) 

The force and moment resultants can be described as follows: 

x xx

A

N dA   
(13.a) 

 x xx
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(13.b) 
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  Based on the variation principle, the variation of strain energy ,U kinetic energy K , and work W done by a couple of 
Timoshenko beams can be determined as: 
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2 2 2

0 2 0 22 2 2
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in which, L is the beam length, 0m and 2m are the translation and rotary inertia masses 0 , 
A

m dA    2
2

A

m z dA   ,   is 

the mass density of the beam material, f and q are the distributed force in axial and transverse directions, respectively, and 

c  is the body couple component in the y-direction per unit length along the x-axis. The bared symbols are the boundary forces 
and moments. By applying the Hamilton principle as: 

 
0

0
T

K U W dt        (15) 

  and substituting Eqs. (12) and (13) into Eq. (14) and consequently in Eq. (15), the modified couple equations of motion for 
the Timoshenko nano-beam may be presented in terms of displacements as: 
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 where    2 26 1 7 12 4/sk        is the Timoshenko shear coefficient. The system of Eqs. (16) is constrained by the 

following boundary conditions: 

xN N    or   u u  at 0 & x L  (17.a) 
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xyY
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
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
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x x

 


 
 at 0 & x L  (17.d) 

To study the free vibrations of SWCNTs, the force terms [i.e.,  ,f q , c and /c x  ] can be neglected from equations of 

motion because the in-plane displacement effect is insensitive with respect to transverse displacements. Therefore, the 
equations of motion for modified couple SWCNTs can be rewritten in a simplified form as follows: 
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 (18.b) 

In order to solve Eq. (18), the following expansions of generalized displacements w and  , which satisfy the boundary 

conditions in Eq. (17), are assumed as: 
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where is the vibration frequency, and  nW and Ψn are the coefficients of Fourier series. By substituting the expansions of w 

and   provided in Eq. (19) into Eq. (18), we obtain the following equations: 
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which can be rewritten in a matrix form as: 

     

    
  

 

3

3

2 4 32 2
2

02 4

3 2 22
2

22 2

2

  1 1

4 4

 1  1 1 Ψ
4 4

sin
0

0
co

1 2
s

1

s s
n

i t

s
ns

n k A n l A n l An k A n x
m W

L LL L L
e

n xn l A EI n n l An k A
k A m

LL L L L



       

      
 

 

      
 

   
    

  
           

         

 
(21) 

By equating the determinant of the coefficient matrix in Eq. (21) to zero, the fundamental frequencies of modified coupled 
SWCNTs can be described by: 
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where the constants 0a , 1a , and 2a  are defined as: 
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By substituting material properties of SWCNTs provided in Table 1 into Eq. (23), the fundamental frequencies of zigzag 
and armchair of SWCNTs derived from the energy equivalent model (EEM) can be computed. Moreover, the frequencies of 
double and multi-walled carbon nanotubes can be computed by using Table 1 and Eqs. (5), (22), and (23).     

4. Numerical Results 

This section is devoted to validate the proposed model with the published work. After that, the effects of translation indices, 
orientation, and length scale parameters on fundamental frequencies of modified couple SWCNTs derived from EEM are 
presented and discussed. The effect of translation index and material length scale on the fundamental frequency of double and 
multi-walled carbon nanotubes are also illustrated. 

    

4.1 Validation 

To validate the current model, the beam properties are assumed according to Ma et al. [32]. Fig. 3a presents the effect of 
length scale of the modified couple Timoshenko beam model on the 1st natural frequency for different Poisson’s ratios. As 
shown, the fundamental frequency decreases by increasing the thickness to material length ratio ( /h l ) from 1 to 10. However, 
the frequency seems to converge to a constant value for thickness to material length ratio of greater than 10. This behavior 
indicates the fundamental frequency is size dependent in small regimes and is insensitive in macro regimes. These results are 
in agreement with the results presented by Ma et al. [32] as shown in Fig 3b.  

 

4.2 Effects of translation indices 

The effect of translation indices on the first four frequencies of SWCNTs at a length scale of 8.8 l nm  for both 
armchair and zigzag structures is shown in Figs. 4a and 4b, respectively. As shown in these Figs, the fundamental frequencies 
decrease dramatically as the translation index (n) increases from 1 to 10 for both armchair and zigzag structures. However, for 
large values of translation index  10n  , weak variation occurs in frequencies due to an increase in n . The fundamental 

frequencies for zigzag are higher than that for armchair.  
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a) Present Analysis b) Fig 7 [Ma et al. [32]] 

Fig. 3. Variation of 1st natural frequency versus h/l ratio for a modified and classical couple stress theory 
where h and b are the height and width of the beam. 

  
a) Armchair b) Zigzag 

Fig. 4. The effect of translation index on the first four frequencies of SWCNTs at 8.8 .l nm  

4.3 Length Scale Effect 

The effects of material length scale on the 1st fundamental frequency of armchair and zigzag SWCNTs are presented in 
Figs.5 and 6, respectively. As can be concluded for both armchair and zigzag structures, the fundamental frequency decreases 
significantly by increasing the ratio of d/l from 1 to 3, where d=2R. However, the frequency is almost independent on ratio of 
diameter to material length scale in the region more than 4 at a specific translation index. This behavior is consistent with that 
proposed by Ma et al. [32].  

  
a) Armchair b) Zigzag 

Fig. 5. The variation of the 1st fundamental frequency versus d/l ratio of SWCNTs at different translation indices 
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The effect of structure orientation on the fundamental frequency of SWCTs can be concluded from Fig 5. As shown, the 
fundamental frequency of zigzag orientation is higher than armchair orientation for the same translation index. This indicates 
that, the zigzag structure is stiffer than the armchair structure for the same translation index.    

The relationship between the fundamental frequency and the translation index for armchair and zigzag SWCNTs at 
different material length scale is illustrated in Fig. 6. According to these Figs. it can be deduced that, as the length scale 
increases from 0.88 nm to 8.8 nm, the fundamental frequency increases. However, by a change in the length scale from 8.8 nm 
to 88 nm, a little bit increase in the fundamental frequency occurs especially where translation index (n) is more than 4. 
Therefore, in the analysis of vibrational behavior of CNTs, the length scale is more sensitive in the value length scale 

10 l nm  and the modified coupled should be applied. If the value length scale 10 l nm , the classical theory may be applied. 

  
a) Armchair b) Zigzag 

Fig. 6. The variation of the 1st fundamental frequency versus translation index of SWCNTs at different material length scales 

4.4 Number of Layer Effect 

The variation in the fundamental frequency versus the translation index at a specific length scale 8.8 l nm  for single, 
double, and multi-carbon nanotubes is presented in Fig. 7. As illustrated, the fundamental frequency decreases as the number 
of layers increases. This observation is attributed to the reduction in CNT stiffness as the number of layers increases. The 
fundamental frequencies of multi-carbon nanotubes (MWCNTs), where N=3 and 4, are very close to each other. Therefore, it 
can be concluded that, the SWCNTs is stiffer than both DWCNTs and MWCNTs. 

  
a) Armchair b) Zigzag 

Fig. 7. The effect of number of layers on the 1st fundamental frequency for single, double, and multi-walled carbon nanotubes at 
8.8 .l nm  

5. Conclusion 

In this study, a modified continuum model was presented to explore and study the vibration behavior of single and multi-
carbon nanotubes (CNTs). The energy equivalent model that derived from basis of molecular mechanics was exploited to 
depict the size-dependent material properties for both zigzag and armchair structures of CNTs. A modified couple stress theory 
was proposed to capture the microstructure size effect by assisting material length scale. A modified kinematic Timoshenko 
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nano-beam including shear deformation and rotary inertia effects was developed. Closed form expressions for natural 
frequencies were obtained and confirmed by previously published works. A parametric study was presented to illustrate the 
effects of the length scale parameter, translation indices of the chiral vector, number of tube layers, and CNTs orientation on 
the vibration behaviors of single and multi-carbon nanotubes. The main conclusions derived from the results are: 
 Young and shear moduli exhibit strong dependence on the translation index especially at smaller indices.   
 The fundamental frequencies decrease significantly as the translation index increases from 1 to 10 for both armchair and 

zigzag structures. The fundamental frequencies of zigzag are higher than that of armchair. 
 For both armchair and zigzag structures, the fundamental frequency decreases significantly by increasing the ratio of d/l 

from 1 to 3.  
 The fundamental frequency of zigzag orientation is higher than armchair orientation at the same translation index. This 

indicates that, the zigzag structure is stiffer than the armchair structure at the same translation index. 
 The fundamental natural frequency decreases as the number of layers increases. This observation is due to the reduction in 

CNT stiffness as the number of layers increases. Therefore, it can be concluded that, the SWCNTs is stiffer than both 
DWCNTs and MWCNTs.   
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