1,892 research outputs found

    Geologic applications of ERTS images on the Colorado Plateau, Arizona

    Get PDF
    Three areas in central and northern Arizona centered on the (1) Verde Valley, (2) Coconino Plateau, and (3) Shivwits Plateau were studied using ERTS photography. Useful applications results include: (1) upgrading of the existing state geologic map of the Verde Valley region; (2) detection of long NW trending lineaments in the basalt cap SE of Flagstaff which may be favorable locations for drilling for new water supplies; (3) tracing of the Bright Angel and Butte faults to twice their previously known length and correlating the extensions with modern seismic events, showing these faults to be present-day earthquake hazards; (4) discovering and successfully drilling perched sandstone aquifers in the Kaibab Limestone on the Coconino Plateau; and (5) determining the relationship between the Shivwits lavas and the formation of the lower Grand Canyon and showing that the lavas should be an excellent aquifer, as yet untapped

    Preliminary geologic investigations in the Colorado Plateau using enhanced ERTS images

    Get PDF
    Bulk and computer enhanced frames of the Verde Valley region of Central Arizona, have been analyzed for structural information and rock unit identification. Most major rock units in areas of sparse ground cover are identifiable on enhanced false-color composites. Regional structural patterns are strikingly visible on the ERTS images. New features have been identified which will aid in the search for ground water near Flagstaff, Sedona and Stewart Ranch

    Application of ERTS and EREP images to geologic investigations of the basin and range: Colorado plateau boundary in northwestern and north-central Arizona

    Get PDF
    The author has identified the following significant results. In the course of the ERTS investigation in the Cataract Creek Basin of the Coconino Plateau it was recognized that shallow perched ground water associated with the Kaibab Limestone could be discovered by means of drilling guided by geologic mapping aided by the use of ERTS imagery. At the Globe Ranch, the perched water table is only 5 meters beneath the surface at the site of the original, hand dug well. Recharge occurs from local runoff and from direct precipitation on the outcrop belt of the sandstone. This well provides water for the ranch at the rate of about 1,000 gallons a week. In order to explore the possibility of further developing this aquifer, unit 5 was mapped over an area of about 50 square miles in the vicinity of the hand-dug well, with negative results. A new location was then picked for drilling based on the occurrence of unit 5 in a favorable structural setting. This location was along a normal fault, and it was anticipated that water might be structurally trapped within the down-dropped block of the fault. Four shallow testholes were drilled and all encountered water. These four water-bearing holes are currently being monitored and will be tested to determine potential production of water from the local sandstone aquifer

    Understanding the influences and impact of patient-clinician communication in cancer care

    Get PDF
    BACKGROUND: Patient-clinician communication is thought to be central to care outcomes, but when and how communication affects patient outcomes is not well understood. OBJECTIVE: We propose a conceptual model and classification framework upon which the empirical evidence base for the impact of patient-clinician communication can be summarized and further built. DESIGN: We use the proposed model and framework to summarize findings from two recent systematic reviews, one evaluating the use of shared decision making (SDM) on cancer care outcomes and the other evaluating the role of physician recommendation in cancer screening use. KEY RESULTS: Using this approach, we identified clusters of studies with positive findings, including those relying on the measurement of SDM from the patients' perspective and affective-cognitive outcomes, particularly in the context of surgical treatment decision making. We also identify important gaps in the literature, including the role of SDM in post-surgical treatment and end-of-life care decisions, and those specifying particular physician communication strategies when recommending cancer screening. CONCLUSIONS: Transparent linkages between key conceptual domains and the influence of methodological approaches on observed patient outcomes are needed to advance our understanding of how and when patient-clinician communication influences patient outcomes. The proposed conceptual model and classification framework can be used to facilitate the translation of empirical evidence into practice and to identify critical gaps in knowledge regarding how and when patient-clinician communication impacts care outcomes in the context of cancer and health care more broadly

    The Unusual Infrared Object HDF-N J123656.3+621322

    Get PDF
    We describe an object in the Hubble Deep Field North with very unusual near-infrared properties. It is readily visible in Hubble Space Telescope NICMOS images at 1.6um and from the ground at 2.2um, but is undetected (with signal-to-noise <~ 2) in very deep WFPC2 and NICMOS data from 0.3 to 1.1um. The f_nu flux density drops by a factor >~ 8.3 (97.7% confidence) from 1.6 to 1.1um. The object is compact but may be slightly resolved in the NICMOS 1.6um image. In a low-resolution, near-infrared spectrogram, we find a possible emission line at 1.643um, but a reobservation at higher spectral resolution failed to confirm the line, leaving its reality in doubt. We consider various hypotheses for the nature of this object. Its colors are unlike those of known galactic stars, except perhaps the most extreme carbon stars or Mira variables with thick circumstellar dust shells. It does not appear to be possible to explain its spectral energy distribution as that of a normal galaxy at any redshift without additional opacity from either dust or intergalactic neutral hydrogen. The colors can be matched by those of a dusty galaxy at z >~ 2, by a maximally old elliptical galaxy at z >~ 3 (perhaps with some additional reddening), or by an object at z >~ 10 whose optical and 1.1um light have been suppressed by the intergalactic medium. Under the latter hypothesis, if the luminosity results from stars and not an AGN, the object would resemble a classical, unobscured protogalaxy, with a star formation rate >~ 100 M_sun/yr. Such UV-bright objects are evidently rare at 2 < z < 12.5, however, with a space density several hundred times lower than that of present-day L* galaxies.Comment: Accepted for publication in the Astrophysical Journal. 27 pages, LaTeX, with 7 figures (8 files); citations & references updated + minor format change

    Coupled surface plasmons and optical guided wave exploration of near-surface director profile

    Get PDF
    Copyright © 2007 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft. This is the published version of an article published in New Journal of Physics Vol. 9, article 49. DOI: 10.1088/1367-2630/9/3/049For a liquid crystal (LC) cell with thin silver claddings it is possible, using a high index coupling prism, to excite both surface plasmon modes and ordinary optical guided modes. In a situation where the tilt of the director varies from homogeneous to homeotropic through the cell, then for p-polarized incident radiation the p-polarized surface plasmon mode and the ordinary guided waves may couple to each other. When the plane containing the director is normal to the incident plane, there is also polarization conversion leading to strong coupling between the p-polarized surface plasmon and s-like guided modes. From theoretical analyses together with numerical modelling it is shown how this coupling between the surface plasmon mode and guided waves gives a high sensitivity to the surface director tilt profile near the walls, higher than that of the surface plasmon mode alone. Experimental confirmation of this has been realized using a hybrid aligned nematic (HAN) LC cell with the director in a plane normal to the incident plane. The results fully confirm the model predictions showing that this coupling of surface plasmons to guided waves provides a powerful tool for near-surface director studies

    Surface Flaw Detection with Ferromagnetic Resonance Probes

    Get PDF
    Small ferromagnetic resonators have been shown to provide effective electromagnetic detectors for surface flaws in magnetic and nonmagnetic metals. As such a resonator is moved along \u27the surface of a test piece it experiences a frequency shift when it passes over a flaw. lwo detection mechanisms are present: (1) an eddy current effect (2) a perturbation of the dc magnetic bias field used to tune the resonator. Results are given for experiments performed on machined slots in aluminum, titanium and steel and on tightly closed fatigue cracks in titanium. Results are also presented for some measurements on titanium aircraft fasteners
    corecore