17 research outputs found

    The Proton-Deuteron Break-Up Process in a Three-Dimensional Approach

    Get PDF
    The pd break-up amplitude in the Faddeev scheme is calculated by employing a three-dimensional method without partial wave decomposition (PWD). In a first step and in view of higher energies only the leading term is evaluated and this for the process d(p,n)pp. A comparison with the results based on PWD reveals discrepancies in the cross section around 200 MeV. This indicates the onset of a limitation of the partial wave scheme. Also, around 200 MeV relativistic effects are clearly visible and the use of relativistic kinematics shifts the cross section peak to where the experimental peak is located. The theoretical peak height, however, is wrong and calls first of all for the inclusion of rescattering terms, which are shown to be important in a nonrelativistic full Faddeev calculation in PWD.Comment: 4 pages, 5 figures, Proceeding of the Second Asia-Pasific Conference on Few-Body Problem in Physics, August 2002, Shanghai, Chin

    TORUS: Theory of Reactions for Unstable iSotopes - Year 1 Continuation and Progress Report

    Get PDF
    The TORUS collaboration derives its name from the research it focuses on, namely the Theory of Reactions for Unstable iSotopes. It is a Topical Collaboration in Nuclear Theory, and funded by the Nuclear Theory Division of the Office of Nuclear Physics in the Office of Science of the Department of Energy. The funding started on June 1, 2010, it will have been running for nine months by the date of submission of this Annual Continuation and Progress Report on March 1, 2011. The extent of funding was reduced from the original application, and now supports one postdoctoral researcher for the years 1 through 3. The collaboration brings together as Principal Investigators a large fraction of the nuclear reaction theorists currently active within the USA. The mission of the TORUS Topical Collaboration is to develop new methods that will advance nuclear reaction theory for unstable isotopes by using three-body techniques to improve direct-reaction calculations, and, by using a new partial-fusion theory, to integrate descriptions of direct and compound-nucleus reactions. This multi-institution collaborative effort is directly relevant to three areas of interest: the properties of nuclei far from stability; microscopic studies of nuclear input parameters for astrophysics, and microscopic nuclear reaction theory

    Chiral uncertainties in ab initio elastic nucleon-nucleus scattering

    Get PDF
    The effective interaction between a nucleon and a nucleus is one of the most important ingredients for reaction theories. Theoretical formulations were introduced early by Feshbach and Watson, and efforts of deriving and computing those ‘optical potentials’ in a microscopic fashion have a long tradition. However, only recently the leading order term in the Watson multiple scattering approach could be calculated fully ab initio, meaning that the same nucleon-nucleon (NN) interaction enters both the structure as well as the reaction pieces on equal footing. This allows the uncertainties from the underlying chiral effective NN interaction to be systematically explored in nucleon-nucleus elastic scattering observables. In this contribution the main ingredients for arriving at the ab initio leading order of the effective nucleon-nucleus interaction in the Watson approach will be reviewed. Concentrating on one specific chiral NN interaction from the LENPIC collaboration and light nuclei with a 0+ ground state, the leading order nucleon-nucleus interaction is calculated using up to the third chiral order (N2LO) in the nucleon-nucleon potential, and elastic scattering observables are extracted. Then pointwise as well as correlated uncertainty quantification is used for the estimation of the chiral truncation error. Elastic scattering observables for 4He, 12C, and 16O for between 65 and 200 MeV projectile energy will be analyzed

    Resonance saturation for four-nucleon operators

    Get PDF
    In the modern description of nuclear forces based on chiral effective field theory, four-nucleon operators with unknown coupling constants appear. These couplings can be fixed by a fit to the low partial waves of neutron-proton scattering. We show that the so determined numerical values can be understood on the basis of phenomenological one-boson-exchange models. We also extract these values from various modern high accuracy nucleon-nucleon potentials and demonstrate their consistency and remarkable agreement with the values in the chiral effective field theory approach. This paves the way for estimating the low-energy constants of operators with more nucleon fields and/or external probes.Comment: 16 pp, REVTeX, 3 figure

    Preface

    No full text

    A data driven machine learning approach to differentiate between autism spectrum disorder and attention-deficit/hyperactivity disorder based on the best-practice diagnostic instruments for autism

    No full text
    Autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) are two frequently co-occurring neurodevelopmental conditions that share certain symptomatology, including social difficulties. This presents practitioners with challenging (differential) diagnostic considerations, particularly in clinically more complex cases with co-occurring ASD and ADHD. Therefore, the primary aim of the current study was to apply a data-driven machine learning approach (support vector machine) to determine whether and which items from the best-practice clinical instruments for diagnosing ASD (ADOS, ADI-R) would best differentiate between four groups of individuals referred to specialized ASD clinics (i.e., ASD, ADHD, ASD + ADHD, ND = no diagnosis). We found that a subset of five features from both ADOS (clinical observation) and ADI-R (parental interview) reliably differentiated between ASD groups (ASD & ASD + ADHD) and non-ASD groups (ADHD & ND), and these features corresponded to the social-communication but also restrictive and repetitive behavior domains. In conclusion, the results of the current study support the idea that detecting ASD in individuals with suspected signs of the diagnosis, including those with co-occurring ADHD, is possible with considerably fewer items relative to the original ADOS/2 and ADI-R algorithms (i.e., 92% item reduction) while preserving relatively high diagnostic accuracy. Clinical implications and study limitations are discussed
    corecore