1,048 research outputs found

    Gaussian bounds for reduced heat kernels of subelliptic operators on nilpotent Lie groups

    Get PDF

    Integrability of irrotational silent cosmological models

    Full text link
    We revisit the issue of integrability conditions for the irrotational silent cosmological models. We formulate the problem both in 1+3 covariant and 1+3 orthonormal frame notation, and show there exists a series of constraint equations that need to be satisfied. These conditions hold identically for FLRW-linearised silent models, but not in the general exact non-linear case. Thus there is a linearisation instability, and it is highly unlikely that there is a large class of silent models. We conjecture that there are no spatially inhomogeneous solutions with Weyl curvature of Petrov type I, and indicate further issues that await clarification.Comment: Minor corrections and improvements; 1 new reference; to appear Class. Quantum Grav.; 16 pages Ioplpp

    New explicit spike solution -- non-local component of the generalized Mixmaster attractor

    Full text link
    By applying a standard solution-generating transformation to an arbitrary vacuum Bianchi type II solution, one generates a new solution with spikes commonly observed in numerical simulations. It is conjectured that the spike solution is part of the generalized Mixmaster attractor.Comment: Significantly revised. Colour figures simplified to accommodate non-colour printin

    Dynamical systems approach to G2 cosmology

    Get PDF
    In this paper we present a new approach for studying the dynamics of spatially inhomogeneous cosmological models with one spatial degree of freedom. By introducing suitable scale-invariant dependent variables we write the evolution equations of the Einstein field equations as a system of autonomous partial differential equations in first-order symmetric hyperbolic format, whose explicit form depends on the choice of gauge. As a first application, we show that the asymptotic behaviour near the cosmological initial singularity can be given a simple geometrical description in terms of the local past attractor on the boundary of the scale-invariant dynamical state space. The analysis suggests the name ``asymptotic silence'' to describe the evolution of the gravitational field near the cosmological initial singularity.Comment: 28 pages, 3 tables, 1 *.eps figure, LaTeX2e (10pt), matches version accepted for publication by Classical and Quantum Gravit

    Weyssenhoff fluid dynamics in general relativity using a 1+3 covariant approach

    Full text link
    The Weyssenhoff fluid is a perfect fluid with spin where the spin of the matter fields is the source of torsion in an Einstein-Cartan framework. Obukhov and Korotky showed that this fluid can be described as an effective fluid with spin in general relativity. A dynamical analysis of such a fluid is performed in a gauge invariant manner using the 1+3 covariant approach. This yields the propagation and constraint equations for the set of dynamical variables. A verification of these equations is performed for the special case of irrotational flow with zero peculiar acceleration by evolving the constraints.Comment: 20 page

    Conformal regularization of Einstein's field equations

    Full text link
    To study asymptotic structures, we regularize Einstein's field equations by means of conformal transformations. The conformal factor is chosen so that it carries a dimensional scale that captures crucial asymptotic features. By choosing a conformal orthonormal frame we obtain a coupled system of differential equations for a set of dimensionless variables, associated with the conformal dimensionless metric, where the variables describe ratios with respect to the chosen asymptotic scale structure. As examples, we describe some explicit choices of conformal factors and coordinates appropriate for the situation of a timelike congruence approaching a singularity. One choice is shown to just slightly modify the so-called Hubble-normalized approach, and one leads to dimensionless first order symmetric hyperbolic equations. We also discuss differences and similarities with other conformal approaches in the literature, as regards, e.g., isotropic singularities.Comment: New title plus corrections and text added. To appear in CQ

    On the propagation of jump discontinuities in relativistic cosmology

    Get PDF
    A recent dynamical formulation at derivative level \ptl^{3}g for fluid spacetime geometries (M,g,u)({\cal M}, {\bf g}, {\bf u}), that employs the concept of evolution systems in first-order symmetric hyperbolic format, implies the existence in the Weyl curvature branch of a set of timelike characteristic 3-surfaces associated with propagation speed |v| = \sfrac{1}{2} relative to fluid-comoving observers. We show it is the physical role of the constraint equations to prevent realisation of jump discontinuities in the derivatives of the related initial data so that Weyl curvature modes propagating along these 3-surfaces cannot be activated. In addition we introduce a new, illustrative first-order symmetric hyperbolic evolution system at derivative level \ptl^{2}g for baryotropic perfect fluid cosmological models that are invariant under the transformations of an Abelian G2G_{2} isometry group.Comment: 19 pages, 1 table, REVTeX v3.1 (10pt), submitted for publication to Physical Review D; added Report-No, corrected typo
    corecore