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Gaussian bounds for reduced heat kernels of

subelliptic operators on nilpotent Lie groups

A�F�M� ter Elst
�
and Humberto Prado

�

Abstract

We obtain Gaussian estimates for the kernels of the semigroups gen�
erated by a class of subelliptic operators H acting on Lp�Rk�� The
class includes anharmonic oscillators and Schr�odinger operators with

external magnetic �elds� The estimates imply an H��functional cal�
culus for the operator H on Lp with p � h���i and in many cases the
spectral p�independence� Moreover	 we show for a subclass of opera�
tors satisfying a homogeneity property that the Riesz transforms of all

orders are bounded�
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� Introduction

In this paper we consider a class of subelliptic operators given by a composition of di�eren�
tial and multiplication operators acting on Lp�Rk�� These operators generate holomorphic

semigroups which are consistent on Lp�Rk� for p � ������ Moreover	 the semigroup opera�
tors turn out to be integral operators with a smooth kernel on Rk �Rk� Examples of such
operators include the �an�harmonic oscillator and the Hamiltonian for curved magnetic
�elds� All these operators are naturally associated to subelliptic operators on a nilpotent

Lie group�
If H is a subelliptic operator a�liated to a continuous representation U of a Lie group

G then the closure generates a holomorphic semigroup S which has a representation inde�
pendent kernel K such that

St �
Z
G
dg Kt�g�U�g� �

For the kernel K one has Gaussian bounds �see �ElR���� Henceforth we consider a class
of representations of a nilpotent Lie group on Lp�Rk�� Under suitable conditions we show

that the semigroup S has a reduced heat kernel � such that

�St���x� �
Z
Rk

dy �t�x � y���y�

for all t � �	 � � C�
c �Rk� and x � Rk� The aim of this work is to prove Gaussian bounds

for �� Previously	 Gaussian bounds for reduced heat kernels have been deduced in �ElR��
and �ElS� for semigroups generated by strongly elliptic operators a�liated to irreducible
unitary representations of nilpotent Lie groups and in �ElS� for strongly elliptic operators

on homogeneous spaces G�M with G unimodular and M compact� In �Sik� Sikora proved
o�� and on�diagonal bounds for the kernels of semigroups generated by �second�order�
Schr�odinger operators with magnetic �eld and a potential of polynomial growth	 satisfying
a Nash inequality� The novelty of this paper is that the operators are weighted subcoercive

instead of strongly elliptic� As a consequence of the Gaussian bounds for the kernel we
obtain that H has a bounded H��functional calculus on all the Lp�spaces with p � h���i
and also in many cases the p�independence of the spectrum of H� We also show that the
Riesz transforms are bounded on Lp for p � h���i�

Typical examples for the second order operators are the spinless particles of mass
m in an external magnetic �eld �B where �B is a polynomial� Then the Hamiltonian is
given by H � �

�m��p � e
c
�A�� where �p � �i�h�r and �A is a polynomial vector potential

satisfying �B � �r� �A	 see �JoK� and �Sim�� Other examples are the anharmonic oscillators
��	��	x��j � x�n	 with j� n � N�

Throughout the following let G be a connected nilpotent Lie group with Lie algebra g�
Then the exponential mapping on g is surjective� Let a�� � � � � ad� be an algebraic basis

of g	 i�e�	 a�� � � � � ad� are independent and together with their multi�commutators span g�
Let U be a continuous representation of G in a Banach space X � For i � f�� � � � � d�g let
Ai � dU�ai� be the in�nitesimal generator of the one parameter group t �� U�exp��tai���

We also need multi�index notation� Set J�d�� �
S�
n��f�� � � � � d

�gn� If 
 � �i�� � � � � in� � J�d��
de�ne A� � Ai� � � �Ain� Generally we adopt the notation of �ElR���

The representations that we consider in this paper are of the following type� First
we assume that there exist ad���� � � � � ad � g such that a�� � � � � ad is a basis for g and
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�g� g� � spanfad���� � � � � adg� Secondly	 let k � d�� For p � ����� let U be a representation
of G in Lp�Rk� of the form�

U�exp a��
�
�x� � eiE�a�x���x � ����a � ���

for all � � C�
c �Rk�	 where E� g�Rk � R is a real polynomial and

����a � ���� � � � � �k�

for all a �
Pd

i�� �i ai � g� It is straightforward to see that the representation is a continuous

representation acting on Lp�Rk� for all p � ������
Fix n�� � � � � nd� � N and set

H �
d�X
i��

����niA�ni
i

with domain

D�H� �
�

��J�d��
k�k�m

D�A��

where m � � lcm�n�� � � � � nd��	 wi � ��ni���m for all i � f�� � � � � d�g and k
k � wi��� � ��win

if 
 � �i�� � � � � in� � J�d��� De�ne the modulus k 	 k�Rk � ����i by

kxk�w �
kX
i��

jxij
�w�wi ���

where x � �x�� � � � � xk� and w � lcm�w�� � � � � wk�� The main result of this paper is the next
theorem�

Theorem ��� Let p � ������ Then the following are satis�ed�

I� The closure H of H generates a semigroup S in Lp�Rk�� which is holomorphic in

the right half�plane�

II� For all t � � the semigroup operator St has a smooth kernel �t � C��Rk�Rk� such

that the maps x �� �t�x � y�� and y �� �t�x� � y� belong to the Schwartz space S�Rk�
for all x�� y� � Rk and

�St���x� �
Z
Rk

dy �t�x � y���y�

for all � � Lp�Rk� and �a�e�� x � Rk�

III� There exist c� � � � such that

j�t�x � y�j � c t�Q�me���kx�yk
mt������m���

for all t � � and x� y � Rk� where Q � w� � � � �� wk�

Moreover� if Ai and Bi denote the left derivative of �t with respect to the �rst

and second variable� respectively� and A� and B� the corresponding multi�derivatives�

then for all 
� 
 � J�d�� there exist c� � � � such that

j�A�B��t��x � y�j � c t��Q�k�k�k�k��me���kx�yk
mt������m���

for all t � � and x� y � Rk�

�



IV� For all p � h���i the operatorH is closed and for all 
 � J�d�� one hasD�Hk�k�m� �
D�A��� Moreover� there exists a c � � such that

kA��kp � c kHk�k�m�kp

for all � � D�Hk�k�m��

Statement I is a direct consequence of �ElR��� To be precise	 it follows from Example ���	

Proposition ���� and Theorem ��� of �ElR��� The sketch of the proof of the other three
statements is as follows� The directions a�� � � � � ad� with the weights w�� � � � � wd� make the
operator H homogeneous� Unfortunately these weights do not in general allow one to
de�ne a family of dilations on g� This problem	 however	 can be circumvented by lifting

the representation to a free nilpotent group eG� Then the semigroup has a kernel fK on eG
and one can relate the reduced heat kernel � with fK� The Gaussian bounds for � follow
by a projection and a scaling argument from the Gaussian bounds for fK� Finally the
boundedness of the Riesz transforms follows from transference�

Although Theorem ��� is formulated for operators H which are sums of even powers	
the conclusions of the theorem are with small modi�cations also valid for a larger class of
operators a�liated to representations of the form ��� of the group G� In Section � we prove
Statements II and III of Theorem ��� in the generalized theorem and in Section � we give

applications and examples� Finally	 in Section � we discuss the boundedness of the Riesz
transforms in case the operator is homogeneous� In that section the representation can be
any induced representation from a character and the representation does not have to be of

the form ���� In particular the bounds are valid for any basis realization of an irreducible
unitary representation�

� Gaussian bounds

Before we can de�ne the operators for which the generalization of Theorem ��� is valid we
have to introduce a suitable free Lie group�

Let a�� � � � � ad� be an algebraic basis of the Lie algebra g of a connected nilpotent Lie

group G and let w�� � � � � wd� � N be weights� For 
 � �i�� � � � � in� � J�d�� set k
k �
wi� � � � �� win� Let

r � maxfk
k � 
 � �i�� � � � � in� � J�d�� and �ai�� �� � � �ain��� ain� � � ��� 
� �g �

Let �g be the nilpotent Lie algebra with d� generators �a�� � � � � �ad� which is free of weighted
step r� So �g is the quotient of the free Lie algebra with d� generators by the ideal spanned

by the commutators ��ai�� �� � � ��ain��� �ain� � � ��� with k�i�� � � � � in�k � r � �� We give �ai the
weight wi for all i � f�� � � � � d�g� Then there exists a family ��t�t�� of dilations of �g
such that �t��ai� � twi �ai for all t � � and i � f�� � � � � d�g �see �NRS� or �ElR��	 Example
����� Moreover	 there exist �ad���� � � � � �a �d � �g and wd���� � � � � w �d � N such that �a�� � � � � �a �d

is a basis for �g and �t��ai� � twi �ai for all t � � and i � fd� � �� � � � � �dg� Then ��g� �g� �
spanf�ad���� � � � � �a �dg �cf� �ElR�� Example �����

Let m � N be such that m � �wiN for all i � f�� � � � � d�g and for all 
 � J�d�� with
k
k � m let c� � C� Moreover	 let eAi � dLeG��ai� for all i � f�� � � � � d�g	 where eG is
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the connected simply connected Lie group with Lie algebra �g and LeG is the left regular

representation of eG on L�� eG�� Set

fH �
X

k�k�m

c� eA�

with domain D�fH� �
T
k�k�mD� eA�� and assume that fH is a weighted subcoercive operator	

i�e�	 there exist �� � � � such that

Re���fH�� � �
X

k�k�m��

k eA��k��� � � k�k���

for all � � C�
c � eG�	 that is	 fH satis�es a G�arding inequality on eG �see �ElR���� Here k 	 k��

is the norm on L�� eG��

Let U be a representation of G in Lp�Rk� of the form ���� We consider the analogue
operator

H �
X

k�k�m

c�A
�

with domain D�H� �
T
k�k�mD�A�� and the same coe�cients as the operator fH�

Theorem ��� Let U be a representation of the form ��� and

H �
X

k�k�m

c�A
�

as above� Let p � ������ Then the following are satis�ed�

I� The closure H of H generates a semigroup S in Lp�Rk�� which is holomorphic in a

p�independent sector�

II� For all t � � the semigroup operator St has a smooth kernel �t � C��Rk�Rk� such

that the maps x �� �t�x � y�� and y �� �t�x� � y� belong to the Schwartz space S�Rk�
for all x�� y� � Rk and

�St���x� �
Z
Rk

dy �t�x � y���y�

for all � � Lp�Rk� and �a�e�� x � Rk�

III� For all 
� 
 � J�d�� there exist c� � � � and � � R such that

j�A�B��t��x � y�j � c t��Q�k�k�k�k��me�te���kx�yk
mt������m���

for all t � � and x� y � Rk� where Q � w� � � � ��wk and the modulus k 	 k on Rk is

as in ����
Moreover� if H is a pure m�th order operator� i�e�� H �

P
k�k�m c�A

�� then �

can be taken equal to ��

IV� The Schwartz space S�Rk� is a core for H�

�



Proof Statement I follows from Proposition ���� and Theorem ��� of �ElR���
Next	 since �g is free of weighted step r there exists a unique Lie algebra homomorphism

�� �g � g such that ���ai� � ai for all i � f�� � � � � d�g� The Lie algebra homomorphism �

lifts to a Lie group homomorphism � from eG onto G� For �g � eG de�ne eU��g� � U����g���
Then eU is a continuous representation of eG in Lp�Rk�� De�ne eE� �g�Rk � R by

eE��a� x� � E����a�� x� �

Let �a �
P �d

i��
��i �ai � �g� Since ���ai� � ����g� �g�� � �g� g� � spanfad���� � � � � adg for all

i � fd� � �� � � � � �dg and

���a� �
d�X
i��

�i ai �

�dX
i�d���

�i ���ai�

it follows that ��
���
�a � �

���
	��a�	 where

��
���
�a � ����� � � � � ��k� �

Hence � eU�gexp�a��
�
�x� � ei

eE��a�x���x � ������a �

for all � � Cc�Rk�	 �a � �g and x � Rk	 where gexp is the exponential map on �g� Thus the

representation eU is of the same type as the representation U �
Note that d eU ��ai� � dU�ai� for all i � f�� � � � � d�g� Therefore we can just as well use

the group eG with the representation eU instead of the group G with the representation U �

According to Theorem ��� of �ElR�� for all t � � there exists a fKt � S� eG� such that

St� �
Z
eG d�g fKt��g� eU��g��

for all � � Lp�Rk�� Moreover	 there exist c� � � � and � � R such that

jfKt�gexp��a��j � c t�
eD�me�te���j�ajmt������m���

���

for all t � � and �a � �g	 where fD � w� � � � �� w �d and the modulus j 	 j on �g is de�ned by

���� �dX
i��

�i �ai

����� �w �

�dX
i��

j�ij
� �w�wi

and �w � lcm�w�� � � � � w �d�� By scaling one can take � � � in case the operator fH is
homogeneous� Next	 set �h � spanf�ak��� � � � � �a �dg and for y � �y�� � � � � yk� � Rk de�ne �y � �g
by

�y � y� �a� � � � �� yk �ak �

Since eE is real valued one can de�ne for all t � � the function �t � C��Rk �Rk� by

�t�x � y� �
Z
�h
d�bfKt�gexp��b� �x � �y�� ei

eE��b�	x�	y�x� �

Then it is easy to verify that Statement II of Theorem ��� is valid�






Now we prove Statement III� It follows from the Gaussian bounds ��� that

j�t�x � y�j �
Z
�h
d�b c t�eD�m e�te���j

�b�	x�	yjmt������m���
���

� c t�
eD�m e�t

Z
�h
d�b e��

����j	x�	yjmt������m���
e��

����j�bjmt������m���

� c t�Q�m e�t e��
����j	x�	yjmt������m���

�
t��
eD�Q��m

Z
�h
d�b e��

����j�bjmt������m���

�

for all t � � and x� y � Rk� But the quantity between the brackets is independent of t �and
also of x and y�	 by scaling� Moreover	 there exists a � � � � such that kzk � � � j�zj for all
z � Rk with kzk � �� Hence	 again by scaling	 it follows that kzk � � � j�zj for all z � Rk�

Therefore the proof of the Gaussian bounds of Statement III is complete if k
k � k
k � ��
Next we consider derivatives of the reduced heat kernel �t� If 
� 
 � J�d�� then

�A�B��t��x � y� �
Z
�h
d�b � eA� eB�fKt��gexp��b� �x � �y�� ei

eE��b�	x�	y�x�

for all t � � and x� y � Rk	 where eBi � dReG��ai� for all i � f�� � � � � d�g and ReG is the right

regular representation on eG� Since one has Gaussian bounds

j� eA� eB�fKt��gexp��a��j � c t��
eD�k�k�k�k��m e�te���j�aj

mt������m���

by �ElR��	 Theorem ���	 one can estimate A�B��t as in ���� Again � can be taken equal

to � if fH is homogeneous�
Finally	 since Ai � 	�	xi � Mi for all i � f�� � � � kg with Mi a multiplication operator

with a polynomial it follows from the Gaussian bounds that St maps S�Rk� into S�Rk�
for all t � �� Therefore S�Rk� is a core for H �see �BrR� Corollary ������� This completes

the proof of Theorem ���� �

� Applications and examples

The Gaussian bounds have several implications� The �rst is the p�independence of the
spectrum if all weights equal one� Note that it will follow from Theorem ��� that the
operator H is already closed on Lp for all p � h���i�

Corollary ��� Assume the notation and conditions of Theorem ���� Moreover� suppose

that wi � � for all i � f�� � � � � d�g� Then for all p � ����� the spectrum �p�H� of the

operator H on Lp�Rk� is independent of p�

Proof This follows from �Kun�	 or �LiV�� �

Note that the spectrum ��H� is independent of p � ����� if the representation U is
irreducible	 by the arguments given in the proof of Theorem ��
 of �ElR���

The second implication of the Gaussian bounds is that the bounded H��functional

calculus on L� extends to all Lp spaces�

�



Corollary ��� Assume the notation and conditions of Theorem ���� Then for all p �
h���i and large enough � � � the operator H � �I has a bounded H��functional calculus

on Lp�Rk�� If the operator H is homogeneous then one can take � � ��

Proof By �ElR�� Theorem 
���III the semigroup generator H satis�es a G�arding inequal�
ity on L�� Therefore H ��I is maximal accretive if � � � is large enough� Hence it follows
from Theorem G of �ADM� that the operator H��I has a bounded H��functional calculus
on L�� Then the corollary is a consequence of the Gaussian bounds of Theorem ����III and

�DuR� Theorem ���� �

Quadrature of the Gaussian bounds gives semigroup bounds�

Corollary ��� Assume the notation and conditions of Theorem ���� Then there exist

c � � and � � R such that for all p� q � ����� with p � q one has

kStkp�q � c t�Q���p���q��m e�t

uniformly for all t � ��

Proof Obviously kStk��� � k�tk� � c t�Q�m e�t by the bounds of Theorem ����III�
Next	 let c� � be as in Theorem ����III with k
k � k
k � �� For t � � de�ne Gt�Rk � R

by Gt�x� � c t�Q�me���kx�yk
mt������m���

� Then

j�St���x�j � e�t
Z
Rk

dy Gt�x� y� j��y�j � e�t �Gt � j�j��x�

for all � � C�
c �Rk� and x � Rk	 where � denotes the convolution on the commutative

group Rk� Therefore	 kStkp�p � kGtk� e�t � kG�k� e�t for all t � � and p � �����	 by
scaling� Now the corollary follows by interpolation� �

If the spectrum ��H� of H is a subset of h���i then one also has exponential decay for

t�� in the Gaussian bounds� Furthermore	 the decay at in�nity of the kernel is almost
equal to the growth bound of the semigroup on L��

Proposition ��� Assume the notation and conditions of Theorem ���� Let

�� � inffRe���H�� � � � C�
c �Rk�g �

Then for all � � � there exist c� � � � such that

j�t�x � y�j � c t�Q�me��
����te���kx�yk
mt������m���

for all t � � and x� y � Rk�

Proof It follows from semigroup theory that kStk��� � e�
�t for all t � �� Let � � ��

Then by Corollary ��� there exist c� � � � such that

k�tk� � kStk��� � kS�t��k���kS�����tk���kS�t��k��� � c t�Q�me�
������te��t

for all t � �� Hence interpolation with the Gaussian estimates of Theorem ����III gives

j�t�x � y�j � j�t�x � y�j� j�t�x � y�j���

�
�
c t�Q�me�te���kx�yk

mt������m���
���

c t�Q�me�
������te��t
����

� c t�Q�me�
������
�te�������te����kx�yk

mt������m���

for all t � � and x� y � Rk	 from which the proposition follows� �

�



Example ��� Let j� n � N� Then the anharmonic oscillator is the operator

H� �
�
�

d�

dx�

	j
� x�n

on L��R� and domain the Schwartz space� This operator is a special example for which
Theorem ��� applies in the following way� Let G be the connected simply connected
Heisenberg group with Lie algebra g and let a�� a�� a
 be a basis of g such that �a�� a�� � a
�

Then the standard irreducible representation U of G is given by�
U�exp��� a� � �� a� � �
 a
���

�
�x� � ei�� eix �� ��x � ���

for all � � C�
c �R�� So U is of the form ��� and if one takes k � � and d� � �� Then

A� � �iP and A� � iQ	 where P and Q are the self�adjoint operators in L��R� given by
�Pf��x� � if ��x� and �Qf��x� � xf�x� for all f � C�

c �R� and x � R� If

H � ����jA�j
� � ����nA�n

�

then the operator H� is the restriction of the self�adjoint operator H to the Schwartz space	
which is a core for H �see �ElR��	 Example ����� Let d� � gcd�j� n�� Then w� � n�d�	

w� � j�d�	 Q � n�d� and the weighted order of H equals m � �j n�d�� Moreover	 kxk � jxj
for all x � R�

Let � be the reduced heat kernel of the semigroup generated by H� Then it is a

consequence of Theorem ��� that there are c� � � � such that

j�t�x � y�j � c t�����j�e���jx�yj
�jn�d� t�������jn�d����

for all t � � and x� y � R� Moreover	 if j � n � � then the smallest eigenvalue of H equals
�� � � and it follows from Proposition ��� that for all � � � there are c� � � � such that

j�t�x � y�j � c t����e������te�� jx�yj
�t��

for all t � � and x� y � R� Note that these bounds are consistent with the explicit
expression for � by Mehler s formula�

�t�x � y� � ����� e��t������e��x�y�
��tanh t���e��x�y�

��coth t���e�t

for all t � � and x� y � R �see �Dav� Theorem ������

Lower order terms are also allowed� If	 for example	 H is an operator of the form

H �
�
�

d�

dx�

	j
� �x�n �

X
l�k��

lj�kn
�jn

ckl x
l d

k

dxk
�
�

with � � �	 ckl � C and domain D�H� � D�P �j� 
D�Q�n� then the semigroup generated
by H has a smooth reduced heat kernel �� Moreover	 there are c� �� � � � such that

j�t�x � y�j � c t�����j�e�te���jx�yj
�jn�d� t�������jn�d����

for all t � � and x� y � R� A typical example of an operator H in �
� is the operator

H � �
d�

dx�
� �x� � �� x�

with � � � and �� � R�

!



Example ��	 Let m be an ideal in the Lie algebra g of a connected simply connected Lie
group G	 let M be the connected �and simply connected� subgroup of G with Lie algebra

m and let � be a one dimensional representation of M � Set k � d� dimm� Let a�� � � � � ad
be a basis for g such that ak��� � � � � ad is a basis for m� Finally	 assume that d� � k is
such that a�� � � � � ad� is an algebraic basis for g and �g� g� � fad���� � � � � adg� Then the basis
realization of the induced representation Ind�M � G��� is of the form ���� This follows

immediately from the description in �CoG� p� ��
 and the fact that m is an ideal�
As an example reconsider the Hamiltonian with polynomial vector �eld �A and magnetic

�eld �B � �r� �A� In order to avoid confusion between the components of the vector �eld �A

and the in�nitesimal generators Aj which we introduce below	 we denote the components of

the components of the vector �eld �A by A�M�
j � Set Xj � �h	j�iec��A

�M�
j with domain S�R
�

for all j � f�� �� �g� Then �Xi�Xj � � �i�hec��
P


k�� �ijkBk for all i� j � f�� �� �g� Since

multiplication operators commute and the Bj are polynomials it follows that X��X��X


generate a �nite dimensional Lie subalgebra g of operators in Hom�S�R
��	 the space of
all linear operators acting on the Schwartz space S�R
�� Extend X��X��X
 to a basis
X��X��X
� � � � �Xd for g such that X�� � � � �Xd are all polynomial multiplication operators	

say with polynomials ��� � � � � �d� Then m � spanfX�� � � � �Xdg is an �Abelian� ideal in

g� Moreover	 there exists a unique linear map l� g � C such that l�Xj� � �ec��A
�M�
j ���

for all j � f�� �� �g and l�Xj� � �i�j��� for all j � f�� � � � � dg� De�ne ��M � C by
��expa� � exp�il�a�� for all a � m� Then it follows from �HeN� Proposition II������ and
its proof that � is a one dimensional representation of M and that the basis realization

U of the induced representation Ind�M � G��� with respect to the basis a�� � � � � ad given
by aj � �h��Xj is of the form ���� For j � f�� �� �g let Aj � dU�aj� be the associated
in�nitesimal generator� Note that Xj� � �hAj� for all � � S�R
�� One can take d� � �

and set H � � �h�

�m�A�
� � A�

� � A�

�� By Theorem ����IV it follows that H is the closure of

the operator

H� �
�

�m
��p �

e

c
�A�� � �

�

�m
�X�

� � X�
� � X�


 �

with domain S�R
�� Moreover	 Theorem ��� states that the semigroup generated by H

has a reduced heat kernel � and there are c� � � � such that

j�t�x � y�j � c t�
��e�� jx�yj
�t��

for all t � � and x� y � R
	 where jx� yj is the Euclidean modulus of x� y�

Remark ��
 It can be proved as above that any operator associated with a representation
of the form ��� equals an operator associated with an induced representation as described

in the �rst part of Example ��� on a possibly di�erent Lie group�

� Riesz transforms

If H �
P
k�k�m c�A

� is acting on Lp�R
k� and is such that the comparable operator fH �P

k�k�m c� eA� is a homogeneous weighted subcoercive operator then in this section we show
that the Riesz transforms of all orders are bounded on Lp�Rk� for all p � h���i� The
result relies on an application of the transference theorem in �CoW�	 which holds naturally
for kernels in L�� eG�	 and a technique that has been used in the the study of the Riesz






transforms of all orders for homogeneous subcoercive operator with complex coe�cients in
�ERS� Section �� We stress that in the present context the representation of the nilpotent

group G can be any representation induced from a character	 including the basis realization
of a unitary irreducible representation �see �Kir�	 �CoG� and �ElR��	 Lemma �����

Theorem ��� Let �M� �� be a ���nite measure space� p � h���i and U a continuous

bounded representation of G in Lp�M�� Suppose fH �
P
k�k�m c� eA� is a homogeneous

weighted subcoercive operator of order m on eG and set

H �
X

k�k�m

c�A
�

with domain D�H� �
T
k�k�mD�A��� Then H is closed� generates a bounded semigroup

and for all 
 � J�d�� one has D�Hk�k�m� � D�A��� Moreover� there exists a c � � such

that

kA��kp � c kHk�k�m�kp

for all � � D�Hk�k�m��

Proof Let �� eG � G be as in the proof of Theorem ���� Let eU � U � �� Then eU is a
continuous representation of eG in Lp�M�� If fK is the kernel of the semigroup eS generated
by fH and S the semigroup generated by H then St� �

ReG d�g fK��g� eU ��g��� for all t � �

and � � Lp�M�� Then the transference method of �CoW�	 Theorem ���	 together with a
density argument	 gives the bounds

kStkp�p � c� k eStk�p��p � c� kfKtk�� � c� kfK�k��

uniformly for all t � �	 where k 	 k�p is the norm on Lp� eG� and c � supg�G kU�g�kp�p� So
H generates a bounded semigroup�

If n � N is large enough then for all �� � � � the convolution kernel �k�
��� of the operator

eR�
��� � eA���I � fH��k�k�m�I � �fH��n

is in L�� eG�� Since Ai � dU�ai� � d eU��ai� for all i � f�� � � � � d�g it follows that

R�
��� � A���I � H��k�k�m�I � �H��n �
Z
eG d�g �k�
�����g� eU��g� �

The transference method then gives the estimates

kR�
���kp�p � c� k eR�
���k�p��p ���

uniformly for all �� � � �� But the right hand side of ��� is bounded uniformly for all
�� � � � by scaling on eG �cf� �ERS� Lemma ����� Hence there exists an M � � such that
kR�
���kp�p �M uniformly for all �� � � �� Then

kA��kp �M k��I � H�k�k�m�I � �H�n�kp

for all � � D��H� �
T
��J�d��D�A��� Taking the limit � � � it follows that

kA��kp �M k��I � H�k�k�m�kp ���

��



for all � � D��H��

Now let � � �	 N � N and � � D�H
N�m

� � D���I � H�N�m�� Since D��H� is a
core for the operator ��I � H�N�m there are ��� ��� � � � � D��H� such that lim�n � �

and lim��I � H�N�m�n � ��I � H�N�m�� Then lim��I � H�j�m�n � ��I � H�j�m� for

all j � f�� �� � � � � Ng� Hence by induction on the number of indices of the multi�index

 and the closedness of the Ai it follows from the estimates ��� that limA��n � A��

for all 
 with k
k � N � So D�H
k�k�m

� � D�A�� for all 
 � J�d�� and the estimates

��� are valid uniformly for all � � D�H
k�k�m

� and � � �� Taking the limit � � � yields

kA��kp �M kH
k�k�m

�kp for all � � D�H
k�k�m

��
Finally	 one has as a special case that D�H� � D�A�� for all 
 with k
k � m� Therefore

the operator H is closed� �

In the unweighted case	 i�e�	 if w� � � � � � wd� � �	 then one can prove as in Corollary

��� of �ERS� that
D�Hnw�m� �

�
k�k�nw

D�A�� �!�

for all n � N and that the seminorms on the two spaces are equivalent� It is unclear

whether the equality �!� is also valid in the weighted case�
Finally	 for non�homogeneous operators we prove optimal regularity for any weighted

subcoercive operator�

Theorem ��� Let �M� �� be a ���nite measure space� p � h���i and U a continuous

bounded representation of G in Lp�M�� Suppose cH �
P
k�k�m c� bA� is a weighted subco�

ercive operator of order m on G� where LG is the left regular representation on Lp�G� andbAi � dLG�ai� for all i � f�� � � � � d�g� Let

H �
X

k�k�m

c�A
�

be the corresponding operator on Lp�M�� Then H is closed and for all 
 � J�d�� one has

D��H � �I�k�k�m� � D�A�� if � � � is large enough� Moreover� there exists a c � � such

that

kA��kp � c k�H � �I�k�k�m�kp

for all � � D��H � �I�k�k�m��

Proof We may assume that cH generates an exponentially decreasing semigroup bS on
Lp�G�� The proof of the theorem is similar to the proof of Theorem ���� If n � N is large

enough then for all � � � the convolution kernel of the operator

bR�
� � bA�cH�k�k�m�I � �cH��n

is in L��G�� Moreover	 D�cHk�k�m� � D� bA�� and the embedding is continuous in Lp�G��
sense by �ElR��	 Section 
� Next	

k bR�
�kLp�G��Lp�G� � k bA�cH�k�k�mkLp�G��Lp�G�k�I � �cH��nkLp�G��Lp�G�

and if M � supt�� k
bStkLp�G��Lp�G� then

k�I � �cH��nkLp�G��Lp�G� � �n� ��"��
Z �

�
dt e�t tn�� k bS�tkLp�G��Lp�G� �M

��



uniformly for � � �� Therefore the operators bR�
� are bounded on Lp�G� uniformly for
� � �� The rest of the proof is by the same arguments as in the proof of Theorem ���� It
relies on the transference method� �

Note that in fact the above argument can be applied to any continuous bounded rep�
resentation of an amenable Lie group G in Lp�M� where �M� �� is a ���nite measure

space�
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