2,453 research outputs found

    Biophotonics in Bioengineering

    No full text

    Efficient and optimized identification of generalized Maxwell viscoelastic relaxation spectra

    Get PDF
    Viscoelastic relaxation spectra are essential for predicting and interpreting the mechanical responses of materials and structures. For biological tissues, these spectra must usually be estimated from viscoelastic relaxation tests. Interpreting viscoelastic relaxation tests is challenging because the inverse problem is expensive computationally. We present here an efficient algorithm that enables rapid identification of viscoelastic relaxation spectra. The algorithm was tested against trial data to characterize its robustness and identify its limitations and strengths. The algorithm was then applied to identify the viscoelastic response of reconstituted collagen, revealing an extensive distribution of viscoelastic time constants. © 2015 Elsevier Ltd

    Illumination uniformity in endoscopic imaging

    Get PDF
    Standardised endoscopic digital images were taken and analysed using an image analysis software (National Instruments Vision Assistant version 7.1.1). The luminance plane was extracted and the pixel intensity distribution was determined along a horizontal line at the position of highest average intensity (centroid). The data was exported to MS Excel and the pixel intensity (y-axis) was plotted against pixel position (x-axis). A trendline using a 2nd order polynomial curve was fitted to each data set. The resultant equation for each curve was compared with equations obtained from other images taken under various illumination conditions and settings

    Remodeling by fibroblasts alters the rate-dependent mechanical properties of collagen

    Get PDF
    The ways that fibroblasts remodel their environment are central to wound healing, development of musculoskeletal tissues, and progression of pathologies such as fibrosis. However, the changes that fibroblasts make to the material around them and the mechanical consequences of these changes have proven difficult to quantify, especially in realistic, viscoelastic three-dimensional culture environments, leaving a critical need for quantitative data. Here, we observed the mechanisms and quantified the mechanical effects of fibroblast remodeling in engineered tissue constructs (ETCs) comprised of reconstituted rat tail (type I) collagen and human fibroblast cells. To study the effects of remodeling on tissue mechanics, stress-relaxation tests were performed on ETCs cultured for 24, 48, and 72 h. ETCs were treated with deoxycholate and tested again to assess the ECM response. Viscoelastic relaxation spectra were obtained using the generalized Maxwell model. Cells exhibited viscoelastic damping at two finite time constants over which the ECM showed little damping, approximately 0.2 s and 10-30 s. Different finite time constants in the range of 1-7000 s were attributed to ECM relaxation. Cells remodeled the ECM to produce a relaxation time constant on the order of 7000 s, and to merge relaxation finite time constants in the 0.5-2 s range into a single time content in the 1 s range. Results shed light on hierarchical deformation mechanisms in tissues, and on pathologies related to collagen relaxation such as diastolic dysfunction. Statement of Significance As fibroblasts proliferate within and remodel a tissue, they change the tissue mechanically. Quantifying these changes is critical for understanding wound healing and the development of pathologies such as cardiac fibrosis. Here, we characterize for the first time the spectrum of viscoelastic (rate-dependent) changes arising from the remodeling of reconstituted collagen by fibroblasts. The method also provides estimates of the viscoelastic spectra of fibroblasts within a three-dimensional culture environment. Results are of particular interest because of the ways that fibroblasts alter the mechanical response of collagen at loading frequencies associated with cardiac contraction in humans. © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved

    Filamin cross-linked semiflexible networks: Fragility under strain

    Full text link
    The semiflexible F-actin network of the cytoskeleton is cross-linked by a variety of proteins including filamin, which contain Ig-domains that unfold under applied tension. We examine a simple semiflexible network model cross-linked by such unfolding linkers that captures the main mechanical features of F-actin networks cross-linked by filamin proteins and show that under sufficiently high strain the network spontaneously self-organizes so that an appreciable fraction of the filamin cross-linkers are at the threshold of domain unfolding. We propose an explanation of this organization based on a mean-field model and suggest a qualitative experimental signature of this type of network reorganization under applied strain that may be observable in intracellular microrheology experiments of Crocker et al.Comment: 4 Pages, 3 figures, Revtex4, submitted to PR

    A note on the sources for the 1945 constitutional debates in Indonesia

    Get PDF
    A close examination of the papers held in the archive of Mr A.K. Pringgodigdo in the Nationaal Archief in The Hague indicates that Muhammad Yamin, presumably for the purpose of his own self-aggrandisement, changed important sections of the original text in his 1959-60 edition of the 1945 constitutional debates in Indonesia. Furthermore, the New Order’s efforts to reduce the legacy and legitimacy of Soekarno led Nugroho Notosusanto, in particular, to use Yamin’s work in an effort to diminish Sukarno’s role in the development of the state ideology of Pancasila

    Self-supervised monocular depth estimation with 3-D displacement module for laparoscopic images

    Get PDF
    We present a novel self-supervised training framework with 3D displacement (3DD) module for accurately estimating per-pixel depth maps from single laparoscopic images. Recently, several self-supervised learning based monocular depth estimation models have achieved good results on the KITTI dataset, under the hypothesis that the camera is dynamic and the objects are stationary, however this hypothesis is often reversed in the surgical setting (laparoscope is stationary, the surgical instruments and tissues are dynamic). Therefore, a 3DD module is proposed to establish the relation between frames instead of ego-motion estimation. In the 3DD module, a convolutional neural network (CNN) analyses source and target frames to predict the 3D displacement of a 3D point cloud from a target frame to a source frame in the coordinates of the camera. Since it is difficult to constrain the depth displacement from two 2D images, a novel depth consistency module is proposed to maintain depth consistency between displacement-updated depth and model-estimated depth to constrain 3D displacement effectively. Our proposed method achieves remarkable performance for monocular depth estimation on the Hamlyn surgical dataset and acquired ground truth depth maps, outperforming monodepth, monodepth2 and packnet models

    The rural population resources of Missouri

    Get PDF
    Publication authorized October 27, 1939.Digitized 2007 AES.Includes bibliographical references
    • …
    corecore