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Self-supervised Monocular Depth Estimation with
3D Displacement Module for Laparoscopic Images
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Abstract—We present a novel self-supervised training frame-
work with 3D displacement (3DD) module for accurately esti-
mating per-pixel depth maps from single laparoscopic images.
Recently, several self-supervised learning based monocular depth
estimation models have achieved good results on the KITTI
dataset, under the hypothesis that the camera is dynamic and the
objects are stationary, however this hypothesis is often reversed
in the surgical setting (laparoscope is stationary, the surgical
instruments and tissues are dynamic). Therefore, a 3DD module
is proposed to establish the relation between frames instead of
ego-motion estimation. In the 3DD module, a convolutional neural
network (CNN) analyses source and target frames to predict the
3D displacement of a 3D point cloud from a target frame to a
source frame in the coordinates of the camera. Since it is difficult
to constrain the depth displacement from two 2D images, a novel
depth consistency module is proposed to maintain depth consis-
tency between displacement-updated depth and model-estimated
depth to constrain 3D displacement effectively. Our proposed
method achieves remarkable performance for monocular depth
estimation on the Hamlyn surgical dataset and acquired ground
truth depth maps, outperforming monodepth, monodepth2 and
packnet models.

Index Terms—Deep learning, self-supervised learning, CNN,
3D displacement, monocular depth estimation.

I. INTRODUCTION

M INIMALLY invasive surgery (MIS) is widely applied in
general surgery because of the low trauma for patients

[1]–[3]. Compared with traditional open surgery, MIS provides
visualization of in vivo environments via laparoscopic vision.
Since 2D laparoscopic images lack depth information that is
available for naked eye 3D human perception and decision
making, it may be useful to estimate accurate per-pixel depth
maps from these images to reconstruct precise 3D tissues
and internal scenes. This will not only provide the surgeon
with a realistic surgical experience but also allow other image
guidance technologies to be seamlessly incorporated into the
procedure. Although depth can also be estimated for images
from stereo laparoscopes using various methods, these are only
available for certain procedures and locations, with monocular
endoscopes remaining more popular [4].

Many monocular depth estimation methods have been pro-
posed, such as monocular feature-based methods (e.g. Struc-
ture from Motion (SfM) [5]), supervised learning and self-
supervised learning. Monocular feature-based methods utilize
conventional feature extractors [6], [7] and feature matching
methods to infer ego-motion matrix between frames and depth
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map, but it is difficult to carry out effective feature matching
[4], [8] in some stereo laparoscopic images due to the low
number of texture features.

Deep learning algorithms may be more robust for in vivo en-
vironments, and self-supervised learning models have become
popular because it is challenging to acquire ground truth depth
maps in real world settings, especially in MIS. Self-supervised
learning-based approaches take synthetic target images as the
supervisory signal to train the depth estimation model. Stereo
training and monocular training are two existing frameworks
for self-supervised monocular depth estimation. The monocu-
lar training utilizes an additional network to predict the ego-
motion matrix between frames to synthesize target images
from adjacent frames under the hypothesis of moving camera
and static scene [4], [8]–[12]. The stereo training makes use
of the geometrical relation between rectified stereo images
to infer a dense stereo disparity map whereby the left/right
image can be reconstructed by horizontally shifting pixels
of the right/left image [13], [14]. In surgery, the position of
the laparoscope is often static and the scenes are dynamic
(moving surgical instruments and deforming tissues), leading
to the identity matrix (ego-motion matrix) and many pixels
remaining stationary. Therefore, it is necessary to implement
a new module to establish a relationship between frames in
monocular training and utilize stereo view synthesis of stereo
training for image synthesis.

In this paper, we propose a new self-supervised learning
based framework for monocular depth estimation in laparo-
scopic imaging. Three contributions are achieved: (1) A 3-
branch Siamese network was designed to enhance the interac-
tion between adjacent frames during training, improving the
performance of the depth estimation model; (2) A 3DD module
was formulated to estimate the per-pixel 3D displacement
map of 3D point clouds between adjacent frames, establishing
a novel relationship between adjacent frames. This module
replaces the conventional ego-motion module and matches
the surgical scenario well; (3) The depth consistency loss
and monocular appearance loss were used to train the 3DD
network (3DD-Net).

II. METHODS

The overall training framework is depicted in Fig. 1 and
several key ideas are introduced in the following sections
together with the three loss functions for training the depth
estimation model and 3DD-Net.

Framework Architecture A 3-branch Siamese network -
composed of three identical and weight-sharing auto-encoder
networks corresponding to target (�C ) and source (�C′ : �C−1 and
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Fig. 1. Framework architecture. The Resnet 18 [15] is pre-trained. The dark blue arrow indicates bilinear interpolation from multi-scale outputs to original
scaled outputs. The colored lines are used to indicate correspondence between output data and loss function (red for ;0? , blue for ;3 , green for ;B).

�C+1) frames respectively - was used to predict dense depth
maps (simplified in Fig. 1). It was tested using a single auto-
encoder from the 3-branch Siamese network. The 3DD-Net
took a stack of �C and �C′ as inputs, with an output in the form
of a 3-channel tensor of the same spatial dimension as the input
data. The output is called as 3D displacement map, describing
the 3-dimensional displacement (x, y and z directions) of each
3D point cloud between two adjacent frames. To generate a
self-supervisory signal, the 3DD module (described in next
section) and view synthesis were used to describe the 3D
displacement of the 3D point cloud between adjacent frames
and reconstruct the target frame respectively. Finally, three loss
functions were used to train the depth estimation model and
3DD-Net (details below).

3D Displacement Module: The inputs of the 3DD module
were the predicted disparity map of the source frame (3C′),
the 3D point cloud of the target frame (%C ) and the 3DD map
(�"C→C′). The 3DD module not only modified the 3D point
cloud for stereo view synthesis, but also generated a depth
consistency loss and monocular appearance loss to enable the
3DD-Net to learn and limit the 3D displacement. As shown
in Fig. 2, the �"C→C′ changed the 3D point cloud from the
target frame to the source frame to generate a depth map from
displacement (�̃C′). The sampled depth map (� ′

C′) could be
generated by the following formula:

� ′C′ = �C′ 〈?A> 9 (%C , �"C→C′ ,  )〉 (1)

Here �C′ is the predicted depth map of the source frame;
?A> 9 () is the 2D projecting function to generate 2D sampling
coordinates and  is the pre-computed intrinsic matrix of
the camera; 〈·〉 is the sampling operation. �C′ and �̃C′ are
compared to limit the displacement in the I direction and
maintain the depth consistency between adjacent frames. The
2D sampling coordinates were also applied to monocular view
synthesis and the synthetic image limited the 2D displacement
in the image plane (G and H dimension) by using the monocular
appearance loss.

View Synthesis: In our framework, there are two view syn-
thesis processes: monocular and stereo. The monocular view
synthesis reconstructs images in the same coordinates as the

Fig. 2. The 3DD module architecture. The orange and purple lines represent
the inputs and outputs respectively.

camera. Such reconstructed images are used to constrain the
displacement of G and H dimensions. Due to the laparoscope
remaining stationary, most pixels captured by the camera
have no disparity between adjacent frames, which makes
depth estimation difficult to learn from the appearance loss
during training and results in a high number of infinite depth
predictions during testing. To solve this, stereo view synthesis
sampled pixel values from the other image of the stereo pair
for training. Two view synthesis operations are described in
formulas (2) and (3).

� ′C′→C ,< = �C′,< 〈?A> 9 (%C , �"C→C′ ,  )〉 (2)

� ′C′→C ,B = �C′,B 〈?A> 9 (%C , �"C→C′ , )B ,  )〉 (3)

Where � ′
C′→C ,< and � ′

C′→C ,B are target images reconstructed
by monocular view synthesis and stereo view synthesis re-
spectively; �C′,< and �C′,B are the captured source images for
monocular and stereo view synthesis respectively; )B is the
pre-computed extrinsic matrix, changing the coordinates of the
3D point cloud for stereo view synthesis (details in Fig. 2).

View-field Mask: For stereo view synthesis, pixels from the
leftmost region of the left image were not sampled because
they were out of view for the right camera. The appearance
loss from such regions caused degradation [10] and must be
masked. Further, the view-field mask prevented the 3DD-Net
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generating abnormal displacement in the I direction. There-
fore, a mask excluded such regions and was generated from
2D sampling coordinates in stereo view synthesis [9], [10],
[16]. When the depth estimation model predicted depth maps
of input frames (�C ), %C could be generated by multiplying
by  −1. Then, the reference coordinates of %C were changed
from the target frame to the source frame by )B . Finally, the 2D
sampling coordinate could be computed by multiplying by  .
In the 2D sampling coordinates, the coordinates of effective
pixels were between -1 and 1 and other values represented
pixels that are out of the field of view. Therefore, the mask
(") could be generated by the following formulae:

coord = ?A> 9 (�C ,  −1, )B ,  ) (4)

" =

{
1 if coord(8, 9 , :) ∈ [−1, 1]
0 else

(5)

Loss Function In this section, we propose a loss function
to retain depth consistency between adjacent frames and
efficiently constrain 3D displacement.

Appearance Loss: The appearance loss was composed of
a monocular and stereo appearance loss. Both loss functions
combined SSIM loss [17] and L1 loss [18] in a specific
proportion [13]. The monocular appearance loss was generated
by comparing the target image with an image reconstructed
by monocular view synthesis, which aimed to constrain the
displacement to the G and H dimensions. Inspired by [11], per-
pixel minimum loss was applied to the monocular appearance
loss to better handle occlusions caused by moving surgical
instruments. The stereo appearance loss compared the target
and reconstructed images, enabling the depth estimation model
to learn depth from frames and stereo pairs. In this framework,
the �̂ ′C′→C and �̂C were images that only contained overlapping
regions of stereo pairs (masked out by "). The U was equal
to 0.85.

;B0? (C ′) = U
2 (1 − ((�" ( �̂ ′C′→C ,B , �̂C )) + (1 − U)

�̂ ′C′→C ,B − �̂C (6)

;<0? = minC′ U2 (1 − ((�" ( �̂ ′C′→C ,<, �̂C )) + (1 − U)
�̂ ′C′→C ,< − �̂C (7)

Depth Consistency Loss: Inspired by Godard et al.’s left-
right consistency [13], we propose the depth consistency
loss to constrain the displacement in the I dimension and
maintain the depth consistency between frames. To balance the
contributions of depth consistency loss and appearance loss,
the normalized loss was used [8].

;3 (C ′) =
∑(" · (� ′

C′ − �̃C′)2)∑(" · (� ′2C′ + �̃2
C′))

(8)

Edge-aware Smoothness Loss: The edge-aware smoothness
loss is widely used in loss function for depth estimation to
reduce the noisy depth values, except values at edges.

;B =
��mG3∗C �� 4−|mG �C | + ��mH3∗C �� 4−|mH �C | (9)

Overall Loss: The overall loss is shown in equation (10).
The � is the set of source frames: {C −1, C +1, B}. Considering
that the depth consistency loss was added to the loss function,

Fig. 3. Qualitative result comparison between our method, packnet [12],
monodepth2 [11], monodepth [13]. The first column contains example test
images. The other columns are the corresponding disparity maps.

the weight _ for smoothness loss was increased to 0.002 to
retain the smoothness contribution.

! =

∑
C′∈� ;

B
0? (C ′) + ;<0?

4
+

∑
C′∈{C−1,C+1} ;3 (C ′)

2
+ _ · ;B (10)

III. EXPERIMENTAL SETUP AND RESULTS

Experiment Setup The Hamlyn surgical dataset [19] was
used to train and evaluate the models, containing 192 ×
382 rectified stereo laparoscopic image pairs, 34240 pairs
for training and 7191 pairs for validation. The stereo camera
had the same intrinsic matrix for all laparoscopic images.
The stereo pairs were rectified, therefore the extrinsic matrix
between stereo camera was a horizontal translation with a
fixed distance. Furthermore, to make the experiment more
convincing, 100 laparoscopic images with ground truth depth
maps acquired by projected gray-code structured lighting and
were collected and analysed, as shown in Fig. 4 [20].

The model was implemented in Pytorch [21]. For training,
optimizer Adam was used in 15 epochs with a batch size of 12
and a learning rate set to 0.0001. The training took 12 hours
with a single 16GB NVIDIA Tesla P100. The monodepth [13],
monodepth2 [11] and packnet [12] models were implemented
for comparison. Considering that monodepth2 achieved the
same performance in both monocular and stereo training, only
stereo training was applied for monodepth2 [11] and packnet
[12] to make the comparison fair.

Comparison Study In this section, we implemented three
self-supervised models for comparison. The SSIM based on
the Hamlyn surgical dataset [19] and the metrics based on
acquired ground truth depth maps were taken as criteria to
evaluate the predicted depth maps, as shown in Table I. Fur-
ther, the qualitative comparison was also conducted between
models, as depicted in Fig. 3.

For testing, we selected one branch of the three-branch
Siamese network as the depth estimation model. Compared
with the other models, our model performed better and had the
fewest parameters. The qualitative result comparison shows
that the artifacts were significantly reduced in our model,
including border artifacts (appearing at regions of source
frames not visible in both images) and texture-copy artifacts
(caused by incorrect translation from input images). The
border artifacts were mainly removed by view-field masking
(in Fig. 5) and the texture-copy artifacts were reduced by the
proposed depth consistency loss (in Fig. 3).
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TABLE I
EVALUATION BASED ON SSIM AND GROUND TRUTH

`BB8< fBB8< `��� f��� Abs Rel Sq Rel RMSE RMSE log X < 1.25 X < 1.252 X < 1.253 Params

Monodepth 0.5843 0.1140 5.741 3.631 0.295 95.195 56.887 0.320 0.589 0.875 0.962 20M

PackNet 0.7380 0.0698 3.893 1.584 0.194 3.857 14.507 0.311 0.660 0.922 0.975 120M

Monodepth2 0.7199 0.0826 3.152 1.009 0.160 2.281 11.345 0.206 0.730 0.976 0.997 14M
Ours 0.7421 0.0641 2.684 0.913 0.136 1.758 9.829 0.165 0.818 0.991 1.000 14M

Left image Right image Left GT Right GT

Fig. 4. The acquired ground truth depth maps via da Vinci (Intuitive Inc.)
stereo laparoscope and projected gray-code structured light pattern [20].

TABLE II
ABLATION STUDY

3DD Module DCL Abs Rel Sq Rel RMSE

Baseline 0.160 2.281 11.345

Baseline X 0.154 2.137 10.992

Siamese-net X X 0.136 1.758 9.829

Fig. 5. The effect of view-field masking is shown in red boxes.

Ablation Study In order to study the contribution of 3DD
module and depth consistency loss (DCL), an ablation study
with acquire ground truth depth maps was conducted. The
monodepth2 was set as the baseline model. As shown in Table
II, the baseline model trained with 3DD module had improved
performance. When the baseline model was replaced by 3-
branch Siamese network with DCL, the improvement was
significant.

IV. CONCLUSION

We proposed a novel self-supervised framework for monoc-
ular depth estimation, achieving state-of-the-art performance
not only for the Hamlyn surgical dataset [19], but also for
a newly acquired dataset with ground truth. We modified
the conventional single auto-encoder network with a 3-branch
Siamese network for training, enforcing the interaction be-
tween adjacent frames. The 3DD module also significantly
improved the model performance via depth consistency and
monocular appearance losses.
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