4 research outputs found
A human monoclonal antibody that specifically binds and inhibits the staphylococcal complement inhibitor protein SCIN
Staphylococcus aureus is a serious public health burden causing a wide variety of infections. Earlier detection of such infections could result in faster and more directed therapies that also prevent resistance development. Human monoclonal antibodies (humAbs) are promising tools for diagnosis and therapy owing to their relatively straightforward synthesis, long history of safe clinical use and high target specificity. Here we show that the humAb 6D4, which was obtained from a random screen of B-cells producing antibodies that bind to whole cells of S. aureus, targets the staphylococcal complement inhibitor (SCIN). The epitope recognized by 6D4 was localized to residues 26 to 36 in the N-terminus of SCIN, which overlap with the active site. Accordingly, 6D4 can inhibit SCIN activity as demonstrated through the analysis of C3b deposition on S. aureus cells and complement-induced lysis of rabbit erythrocytes. Importantly, while SCIN is generally regarded as a secreted virulence factor, 6D4 allowed detection of strongly increased SCIN binding to S. aureus cells upon exposure to human serum, relating to the known binding of SCIN to C3 convertases deposited on the staphylococcal cell surface. Lastly, we show that labeling of humAb 6D4 with a near-infrared fluorophore allows one-step detection of SCIN-producing S. aureus cells. Together, our findings show that the newly described humAb 6D4 specifically recognizes S. aureus SCIN, which can potentially be used for detection of human serum-incubated S. aureus strains expressing SCIN
A human monoclonal antibody targeting the conserved staphylococcal antigen IsaA protects mice against Staphylococcus aureus bacteremia
Due to substantial therapy failure and the emergence of antibiotic-resistant Staphylococcus aureus strains, alternatives for antibiotic treatment of S. aureus infections are urgently needed. Passive immunization using S. aureus-specific monoclonal antibodies (mAb) could be such an alternative to prevent and treat severe S. aureus infections. The invariantly expressed immunodominant staphylococcal antigen A (IsaA) is a promising target for passive immunization. Here we report the development of the human anti-IsaA IgG1 mAb 1D9, which was shown to bind to all 26 S. aureus isolates tested. These included both methicillin-susceptible and methicillin-resistant S. aureus (MSSA and MRSA, respectively). Immune complexes consisting of IsaA and 1D9 stimulated human as well as murine neutrophils to generate an oxidative burst. In a murine bacteremia model, the prophylactic treatment with a single dose of 5 mg/kg 1D9 improved the survival of mice challenged with S. aureus isolate P (MSSA) significantly, while therapeutic treatment with the same dose did not influence animal survival. Neither prophylactic nor therapeutic treatment with 5 mg/kg 1D9 resulted in improved survival of mice with S. aureus USA300 (MRSA) bacteremia. Importantly, our studies show that healthy S. aureus carriers elicit an immune response which is sufficient to generate protective mAbs against invariant staphylococcal surface antigens. Human mAb 1D9, possibly conjugated to for example another antibody, antibiotics, cytokines or chemokines, may be valuable to fight S. aureus infections in patients
Rise and fall of SARS-CoV-2 variants in Rotterdam: Comparison of wastewater and clinical surveillance
Monitoring of SARS-CoV-2 in wastewater (WW) is a promising tool for epidemiological surveillance, correlating not only viral RNA levels with the infection dynamics within the population, but also to viral diversity. However, the complex mixture of viral lineages in WW samples makes tracking of specific variants or lineages circulating in the population a challenging task. We sequenced sewage samples of 9 WW-catchment areas within the city of Rotterdam, used specific signature mutations from individual SARS-CoV-2 lineages to estimate their relative abundances in WW and compared them against those observed in clinical genomic surveillance of infected individuals between September 2020 and December 2021. We showed that especially for dominant lineages, the median of the frequencies of signature mutations coincides with the occurrence of those lineages in Rotterdam's clinical genomic surveillance. This, along with digital droplet RT-PCR targeting signature mutations of specific variants of concern (VOCs), showed that several VOCs emerged, became dominant and were replaced by the next VOC in Rotterdam at different time points during the study. In addition, single nucleotide variant (SNV) analysis provided evidence that spatio-temporal clusters can also be discerned from WW samples. We were able to detect specific SNVs in sewage, including one resulting in the Q183H amino acid change in the Spike gene, that was not captured by clinical genomic surveillance. Our results highlight the potential use of WW samples for genomic surveillance, increasing the set of epidemiological tools to monitor SARS-CoV-2 diversity