19 research outputs found

    Radiographic classifications in Perthes disease: Interobserver agreement and association with femoral head sphericity at 5-year follow-up

    No full text
    Background and purpose — Different radiographic classifications have been proposed for prediction of outcome in Perthes disease. We assessed whether the modified lateral pillar classification would provide more reliable interobserver agreement and prognostic value compared with the original lateral pillar classification and the Catterall classification. Patients and methods — 42 patients (38 boys) with Perthes disease were included in the interobserver study. Their mean age at diagnosis was 6.5 (3–11) years. 5 observers classified the radiographs in 2 separate sessions according to the Catterall classification, the original and the modified lateral pillar classifications. Interobserver agreement was analysed using weighted kappa statistics. We assessed the associations between the classifications and femoral head sphericity at 5-year follow-up in 37 non-operatively treated patients in a crosstable analysis (Gamma statistics for ordinal variables, γ). Results — The original lateral pillar and Catterall classifications showed moderate interobserver agreement (kappa 0.49 and 0.43, respectively) while the modified lateral pillar classification had fair agreement (kappa 0.40). The original lateral pillar classification was strongly associated with the 5-year radiographic outcome, with a mean γ correlation coefficient of 0.75 (95% CI: 0.61–0.95) among the 5 observers. The modified lateral pillar and Catterall classifications showed moderate associations (mean γ correlation coefficient 0.55 [95% CI: 0.38–0.66] and 0.64 [95% CI: 0.57–0.72], respectively). Interpretation — The Catterall classification and the original lateral pillar classification had sufficient interobserver agreement and association to late radiographic outcome to be suitable for clinical use. Adding the borderline B/C group did not increase the interobserver agreement or prognostic value of the original lateral pillar classification

    Functional and Structural Adaptations of Skeletal Muscle in Long-Term Juvenile Dermatomyositis; a Controlled Cross-Sectional Study

    No full text
    Objective To compare muscle strength and endurance of the knee extensors between patients with long‐term juvenile dermatomyositis (DM) and controls and between patients with active disease and those with inactive disease, and to explore associations between strength/endurance and 1) clinical parameters, 2) physical activity, and 3) humoral/structural adaptation in the skeletal muscle of patients. Methods In a cross‐sectional study (44 patients and 44 age‐ and sex‐matched controls), we tested isometric muscle strength (peak torque, in Nm) and dynamic muscle endurance (total work, in Joules) of the knee extensors, physical activity (measured by accelerometer), and serum myokine levels (by enzyme‐linked immunosorbent assay). Patients were examined with validated tools (clinical muscle tests and measures of disease activity/damage and inactive disease) and using magnetic resonance imaging of the thigh muscles, which included evaluation of the quadriceps cross‐sectional area (CSA). Needle biopsy samples of the vastus lateralis muscle (obtained from 12 patients ages ≄18 years) were assessed by histochemistry. Results After a mean ± SD disease duration of 21.8 ± 11.8 years, peak torque was lower in patients with juvenile DM compared to controls (mean difference 29 Nm, 95% confidence interval 13–46; P = 0.001). Similarly, total work of the knee extensors was lower in patients compared to controls (median 738J [interquartile range 565–1,155] versus 1,249J [interquartile range 815–1,665]; P < 0.001). Both peak torque and total work were lower in patients with active juvenile DM compared to those with inactive disease (both P < 0.019); in analyses controlled for quadriceps CSA, only total work remained lower in patients with active disease. Moreover, peak torque and total work correlated with findings from clinical muscle tests in patients with active disease (r = 0.57–0.84). Muscle biopsy results indicated that the fiber type composition was different, but capillary density was similar, between patients with active disease and those with inactive disease. Conclusion In patients with long‐term juvenile DM, both muscle strength and endurance of the knee extensors were lower when compared to matched controls, and also lower in patients with active disease compared to those with inactive disease. Our results indicate a need for more sensitive muscle tests in this clinical setting. We hypothesize that impaired muscle endurance in patients with active juvenile DM may be influenced by structural/functional adaptations of muscle tissue independent of muscle size

    Functional and Structural Adaptations of Skeletal Muscle in Long-Term Juvenile Dermatomyositis: a Controlled Cross-Sectional Study

    No full text
    Objective: To compare muscle strength and endurance of the knee extensors between patients with long‐term juvenile dermatomyositis (DM) and controls and between patients with active disease and those with inactive disease, and to explore associations between strength/endurance and 1) clinical parameters, 2) physical activity, and 3) humoral/structural adaptation in the skeletal muscle of patients. Methods: In a cross‐sectional study (44 patients and 44 age‐ and sex‐matched controls), we tested isometric muscle strength (peak torque, in Nm) and dynamic muscle endurance (total work, in Joules) of the knee extensors, physical activity (measured by accelerometer), and serum myokine levels (by enzyme‐linked immunosorbent assay). Patients were examined with validated tools (clinical muscle tests and measures of disease activity/damage and inactive disease) and using magnetic resonance imaging of the thigh muscles, which included evaluation of the quadriceps cross‐sectional area (CSA). Needle biopsy samples of the vastus lateralis muscle (obtained from 12 patients ages ≄18 years) were assessed by histochemistry. Results: After a mean ± SD disease duration of 21.8 ± 11.8 years, peak torque was lower in patients with juvenile DM compared to controls (mean difference 29 Nm, 95% confidence interval 13–46; P = 0.001). Similarly, total work of the knee extensors was lower in patients compared to controls (median 738J [interquartile range 565–1,155] versus 1,249J [interquartile range 815–1,665]; P < 0.001). Both peak torque and total work were lower in patients with active juvenile DM compared to those with inactive disease (both P < 0.019); in analyses controlled for quadriceps CSA, only total work remained lower in patients with active disease. Moreover, peak torque and total work correlated with findings from clinical muscle tests in patients with active disease (r = 0.57–0.84). Muscle biopsy results indicated that the fiber type composition was different, but capillary density was similar, between patients with active disease and those with inactive disease. Conclusion: In patients with long‐term juvenile DM, both muscle strength and endurance of the knee extensors were lower when compared to matched controls, and also lower in patients with active disease compared to those with inactive disease. Our results indicate a need for more sensitive muscle tests in this clinical setting. We hypothesize that impaired muscle endurance in patients with active juvenile DM may be influenced by structural/functional adaptations of muscle tissue independent of muscle size

    Additional file 1: Figure S1. of Comparative analyses of muscle MRI and muscular function in anti-synthetase syndrome patients and matched controls: a cross-sectional study

    No full text
    showing the distribution of myositis subsets in ASS patients with and without anti-Jo1 antibodies. Blue polymyositis (PM), light blue dermatomyositis (DM), red clinical amyopathic dermatomyositis (CADM) and yellow no myositis. (TIF 31 kb

    Clinical, genetic and structural delineation of RPL13-related spondyloepimetaphyseal dysplasia suggest extra-ribosomal functions of eL13

    No full text
    Abstract Spondyloepimetaphyseal dysplasia with severe short stature, RPL13-related (SEMD-RPL13), MIM#618728), is a rare autosomal dominant disorder characterized by short stature and skeletal changes such as mild spondylar and epimetaphyseal dysplasia affecting primarily the lower limbs. The genetic cause was first reported in 2019 by Le Caignec et al., and six disease-causing variants in the gene coding for a ribosomal protein, RPL13 (NM_000977.3) have been identified to date. This study presents clinical and radiographic data from 12 affected individuals aged 2–64 years from seven unrelated families, showing highly variable manifestations. The affected individuals showed a range from mild to severe short stature, retaining the same radiographic pattern of spondylar- and epi-metaphyseal dysplasia, but with varying severity of the hip and knee deformities. Two new missense variants, c.548 G>A, p.(Arg183His) and c.569 G>T, p.(Arg190Leu), and a previously known splice variant c.477+1G>A were identified, confirming mutational clustering in a highly specific RNA binding motif. Structural analysis and interpretation of the variants’ impact on the protein suggests that disruption of extra-ribosomal functions of the protein through binding of mRNA may play a role in the skeletal phenotype of SEMD-RPL13. In addition, we present gonadal and somatic mosaicism for the condition

    A novel type of rhizomelic chondrodysplasia punctata, RCDP5, is caused by loss of the PEX5 long isoform

    No full text
    Import of peroxisomal matrix proteins, crucial for peroxisome biogenesis, is mediated by the cytosolic receptors PEX5 and PEX7 that recognize proteins carrying peroxisomal targeting signals 1 or 2 (PTS1 or PTS2), respectively. Mutations in PEX5 or 12 other PEX genes cause peroxisome biogenesis disorders, collectively named the Zellweger spectrum disorders (ZSDs), whereas mutations in PEX7 cause rhizomelic chondrodysplasia punctata type 1 (RCDP1). Three additional RCDP types, RCDP2-3-4, are caused, respectively, by mutations in GNPAT, AGPS and FAR1, encoding enzymes involved in plasmalogen biosynthesis. Here we report a fifth type of RCDP (RCDP5) caused by a novel mutation in PEX5. In four patients with RCDP from two independent families, we identified a homozygous frame shift mutation c.722dupA (p.Val242Glyfs(∗)33) in PEX5 (GenBank: NM_001131023.1). PEX5 encodes two isoforms, PEX5L and PEX5S, and we show that the c.722dupA mutation, located in the PEX5L-specific exon 9, results in loss of PEX5L only. Both PEX5 isoforms recognize PTS1-tagged proteins, but PEX5L is also a co-receptor for PTS2-tagged proteins. Previous patients with PEX5 mutations had ZSD, mainly due to deficient import of PTS1-tagged proteins. Similarly to mutations in PEX7, loss of PEX5L results in deficient import of PTS2-tagged proteins only, thus causing RCDP instead of ZSD. We demonstrate that PEX5L expression restores the import of PTS2-tagged proteins in patient fibroblasts. Due to the biochemical overlap between RCDP1 and RCDP5, sequencing of PEX7 and exon 9 in PEX5 should be performed in patients with a selective defect in the import of PTS2-tagged protein

    Axial Spondylometaphyseal Dysplasia Is Caused by C21orf2 Mutations

    No full text
    Axial spondylometaphyseal dysplasia (axial SMD) is an autosomal recessive disease characterized by dysplasia of axial skeleton and retinal dystrophy. We conducted whole exome sequencing and identified C21orf2 (chromosome 21 open reading frame 2) as a disease gene for axial SMD. C21orf2 mutations have been recently found to cause isolated retinal degeneration and Jeune syndrome. We found a total of five biallelic C21orf2 mutations in six families out of nine: three missense and two splicing mutations in patients with various ethnic backgrounds. The pathogenic effects of the splicing (splice-site and branch-point) mutations were confirmed on RNA level, which showed complex patterns of abnormal splicing. C21orf2 mutations presented with a wide range of skeletal phenotypes, including cupped and flared anterior ends of ribs, lacy ilia and metaphyseal dysplasia of proximal femora. Analysis of patients without C21orf2 mutation indicated genetic heterogeneity of axial SMD. Functional data in chondrocyte suggest C21orf2 is implicated in cartilage differentiation. C21orf2 protein was localized to the connecting cilium of the cone and rod photoreceptors, confirming its significance in retinal function. Our study indicates that axial SMD is a member of a unique group of ciliopathy affecting skeleton and retina
    corecore