5,283 research outputs found
Full-Duplex Systems Using Multi-Reconfigurable Antennas
Full-duplex systems are expected to achieve 100% rate improvement over
half-duplex systems if the self-interference signal can be significantly
mitigated. In this paper, we propose the first full-duplex system utilizing
Multi-Reconfigurable Antenna (MRA) with ?90% rate improvement compared to
half-duplex systems. MRA is a dynamically reconfigurable antenna structure,
that is capable of changing its properties according to certain input
configurations. A comprehensive experimental analysis is conducted to
characterize the system performance in typical indoor environments. The
experiments are performed using a fabricated MRA that has 4096 configurable
radiation patterns. The achieved MRA-based passive self-interference
suppression is investigated, with detailed analysis for the MRA training
overhead. In addition, a heuristic-based approach is proposed to reduce the MRA
training overhead. The results show that at 1% training overhead, a total of
95dB self-interference cancellation is achieved in typical indoor environments.
The 95dB self-interference cancellation is experimentally shown to be
sufficient for 90% full-duplex rate improvement compared to half-duplex
systems.Comment: Submitted to IEEE Transactions on Wireless Communication
Implementation of Adaptive Neural Networks Controller for NXT SCARA Robot System
Several neural network controllers for robotic manipulators have been developed during the last decades due to their capability to learn the dynamic properties and the improvements in the global stability of the system. In this paper, an adaptive neural controller has been designed with self learning to resolve the problems caused by using a classical controller. A comparison between the improved unsupervised adaptive neural network controller and the P controller for the NXT SCARA robot system is done, and the result shows the improvement of the self learning controller to track the determined trajectory of robotic automated controllers with uncertainties. Implementation and practical results were designed to guarantee online real-time
Quantum Trajectory Analysis of the Two-Mode Three-Level Atom Microlaser
We consider a single atom laser (microlaser) operating on three-level atoms
interacting with a two-mode cavity. The quantum statistical properties of the
cavity field at steady state are investigated by the quantum trajectory method
which is a Monte Carlo simulation applied to open quantum systems. It is found
that a steady state solution exists even when the detailed balance condition is
not guaranteed. The differences between a single mode microlaser and a two-mode
microlaser are highlighted. The second-order correlation function g^2(T) of a
single mode is studied and special attention is paid to the one-photon trapping
state, for which a simple formula is derived for its correlation function. We
show the effects of the velocity spread of the atoms used to pump the
microlaser cavity on the second-order correlation function, trapping states,
and phase transitions of the cavity field
Absence of exponential sensitivity to small perturbations in nonintegrable systems of spins 1/2
We show that macroscopic nonintegrable lattices of spins 1/2, which are often
considered to be chaotic, do not exhibit the basic property of classical
chaotic systems, namely, exponential sensitivity to small perturbations. We
compare chaotic lattices of classical spins and nonintegrable lattices of spins
1/2 in terms of their magnetization responses to imperfect reversal of spin
dynamics known as Loschmidt echo. In the classical case, magnetization exhibits
exponential sensitivity to small perturbations of Loschmidt echoes, which is
characterized by twice the value of the largest Lyapunov exponent of the
system. In the case of spins 1/2, magnetization is only power-law sensitive to
small perturbations. Our findings imply that it is impossible to define
Lyapunov exponents for lattices of spins 1/2 even in the macroscopic limit. At
the same time, the above absence of exponential sensitivity to small
perturbations is an encouraging news for the efforts to create quantum
simulators. The power-law sensitivity of spin 1/2 lattices to small
perturbations is predicted to be measurable in nuclear magnetic resonance
experiments.Comment: 12 pages, 8 figures, minor changes, new reference
Scientific investigations in the Gulf of Mexico and Caribbean Sea during the 1974-1975 Calypso cruise, parts 1 and 2
The distribution and concentrations of the standing crop of phytoplankton and nutrient salts in the Gulf of Mexico and the Caribbean Sea were investigated to provide ground truth for correlating temperature and chlorophyll-a measurements with observations from NASA U-2 aircraft equipped with specially designed sensors for measuring ocean color phenomena. The physical, chemical, and biological data obtained is summarized. Sampling procedures and methods used for determining plant pigments, species composition of phytoplankton, nutrient salt analysis, and the euphotic zones are described
Vacancy complexes in nonequilibrium germanium-tin semiconductors
Understanding the nature and behavior of vacancy-like defects in epitaxial
GeSn metastable alloys is crucial to elucidate the structural and
optoelectronic properties of these emerging semiconductors. The formation of
vacancies and their complexes is expected to be promoted by the relatively low
substrate temperature required for the epitaxial growth of GeSn layers with Sn
contents significantly above the equilibrium solubility of 1 at.%. These
defects can impact both the microstructure and charge carrier lifetime. Herein,
to identify the vacancy-related complexes and probe their evolution as a
function of Sn content, depth-profiled pulsed low-energy positron annihilation
lifetime spectroscopy and Doppler broadening spectroscopy were combined to
investigate GeSn epitaxial layers with Sn content in the 6.5-13.0 at.% range.
The samples were grown by chemical vapor deposition method at temperatures
between 300 and 330 {\deg}C. Regardless of the Sn content, all GeSn samples
showed the same depth-dependent increase in the positron annihilation line
broadening parameters, which confirmed the presence of open volume defects. The
measured average positron lifetimes were the highest (380-395 ps) in the region
near the surface and monotonically decrease across the analyzed thickness, but
remain above 350 ps. All GeSn layers exhibit lifetimes that are 85 to 110 ps
higher than the Ge reference layers. Surprisingly, these lifetimes were found
to decrease as Sn content increases in GeSn layers. These measurements indicate
that divacancies are the dominant defect in the as-grown GeSn layers. However,
their corresponding lifetime was found to be shorter than in epitaxial Ge thus
suggesting that the presence of Sn may alter the structure of divacancies.
Additionally, GeSn layers were found to also contain a small fraction of
vacancy clusters, which become less important as Sn content increases
Electrocardiographic repolarization-related variables as predictors of coronary heart disease death in the women's health initiative study.
BackgroundWe evaluated 25 repolarization-related ECG variables for the risk of coronary heart disease (CHD) death in 52 994 postmenopausal women from the Women's Health Initiative study.Methods and resultsHazard ratios from Cox regression were computed for subgroups of women with and without cardiovascular disease (CVD). During the average follow-up of 16.9 years, 941 CHD deaths occurred. Based on electrophysiological considerations, 2 sets of ECG variables with low correlations were considered as candidates for independent predictors of CHD death: Set 1, Ѳ(Tp|Tref), the spatial angle between T peak (Tp) and normal T reference (Tref) vectors; Ѳ(Tinit|Tterm), the angle between the initial and terminal T vectors; STJ depression in V6 and rate-adjusted QTp interval (QTpa); and Set 2, TaVR and TV1 amplitudes, heart rate, and QRS duration. Strong independent predictors with over 2-fold increased risk for CHD death in women with and without CVD were Ѳ(Tp|Tref) >42° from Set 1 and TaVR amplitude >-100 μV from Set 2. The risk for these CHD death predictors remained significant after multivariable adjustment for demographic/clinical factors. Other significant predictors for CHD death in fully adjusted risk models were Ѳ(Tinit|Tterm) >30°, TV1 >175 μV, and QRS duration >100 ms.ConclusionsѲ(Tp|Tref) angle and TaVR amplitude are associated with CHD mortality in postmenopausal women. The use of these measures to identify high-risk women for further diagnostic evaluation or more intense preventive intervention warrants further study.Clinical trial registration urlhttp://www.clinicaltrials.gov. Unique identifier: NCT00000611
Electron-lattice kinetics of metals heated by ultrashort laser pulses
We propose a kinetic model of transient nonequilibrium phenomena in metals
exposed to ultrashort laser pulses when heated electrons affect the lattice
through direct electron-phonon interaction. This model describes the
destruction of a metal under intense laser pumping. We derive the system of
equations for the metal, which consists of hot electrons and a cold lattice.
Hot electrons are described with the help of the Boltzmann equation and
equation of thermoconductivity. We use the equations of motion for lattice
displacements with the electron force included. The lattice deformation is
estimated immediately after the laser pulse up to the time of electron
temperature relaxation. An estimate shows that the ablation regime can be
achieved.Comment: 7 pages; Revtex. to appear in JETP 88, #1 (1999
- …
