65 research outputs found

    Effects of Thyroxine Exposure on Osteogenesis in Mouse Calvarial Pre-Osteoblasts

    Get PDF
    The incidence of craniosynostosis is one in every 1,800-2500 births. The gene-environment model proposes that if a genetic predisposition is coupled with environmental exposures, the effects can be multiplicative resulting in severely abnormal phenotypes. At present, very little is known about the role of gene-environment interactions in modulating craniosynostosis phenotypes, but prior evidence suggests a role for endocrine factors. Here we provide a report of the effects of thyroid hormone exposure on murine calvaria cells. Murine derived calvaria cells were exposed to critical doses of pharmaceutical thyroxine and analyzed after 3 and 7 days of treatment. Endpoint assays were designed to determine the effects of the hormone exposure on markers of osteogenesis and included, proliferation assay, quantitative ALP activity assay, targeted qPCR for mRNA expression of Runx2, Alp, Ocn, and Twist1, genechip array for 28,853 targets, and targeted osteogenic microarray with qPCR confirmations. Exposure to thyroxine stimulated the cells to express ALP in a dose dependent manner. There were no patterns of difference observed for proliferation. Targeted RNA expression data confirmed expression increases for Alp and Ocn at 7 days in culture. The genechip array suggests substantive expression differences for 46 gene targets and the targeted osteogenesis microarray indicated 23 targets with substantive differences. 11 gene targets were chosen for qPCR confirmation because of their known association with bone or craniosynostosis (Col2a1, Dmp1, Fgf1, 2, Igf1, Mmp9, Phex, Tnf, Htra1, Por, and Dcn). We confirmed substantive increases in mRNA for Phex, FGF1, 2, Tnf, Dmp1, Htra1, Por, Igf1 and Mmp9, and substantive decreases for Dcn. It appears thyroid hormone may exert its effects through increasing osteogenesis. Targets isolated suggest a possible interaction for those gene products associated with calvarial suture growth and homeostasis as well as craniosynostosis. © 2013 Cray et al

    Age-related increase of kynurenine enhances miR29b-1-5p to decrease both CXCL12 signaling and the epigenetic enzyme Hdac3 in bone marrow stromal cells

    Get PDF
    Mechanisms leading to age-related reductions in bone formation and subsequent osteoporosis are still incompletely understood. We recently demonstrated that kynurenine (KYN), a tryptophan metabolite, accumulates in serum of aged mice and induces bone loss. Here, we report on novel mechanisms underlying KYN's detrimental effect on bone aging. We show that KYN is increased with aging in murine bone marrow mesenchymal stem cells (BMSCs). KYN reduces bone formation via modulating levels of CXCL12 and its receptors as well as histone deacetylase 3 (Hdac3). BMSCs responded to KYN by significantly decreasing mRNA expression levels of CXCL12 and its cognate receptors, CXCR4 and ACKR3, as well as downregulating osteogenic gene RUNX2 expression, resulting in a significant inhibition in BMSCs osteogenic differentiation. KYN's effects on these targets occur by increasing regulatory miRNAs that target osteogenesis, specifically miR29b-1-5p. Thus, KYN significantly upregulated the anti-osteogenic miRNA miR29b-1-5p in BMSCs, mimicking the up-regulation of miR-29b-1-5p in human and murine BMSCs with age. Direct inhibition of miR29b-1-5p by antagomirs rescued CXCL12 protein levels downregulated by KYN, while a miR29b-1-5p mimic further decreased CXCL12 levels. KYN also significantly downregulated mRNA levels of Hdac3, a target of miR-29b-1-5p, as well as its cofactor NCoR1. KYN is a ligand for the aryl hydrocarbon receptor (AhR). We hypothesized that AhR mediates KYN's effects in BMSCs. Indeed, AhR inhibitors (CH-223191 and 3',4'-dimethoxyflavone [DMF]) partially rescued secreted CXCL12 protein levels in BMSCs treated with KYN. Importantly, we found that treatment with CXCL12, or transfection with an miR29b-1-5p antagomir, downregulated the AhR mRNA level, while transfection with miR29b-1-5p mimic significantly upregulated its level. Further, CXCL12 treatment downregulated IDO, an enzyme responsible for generating KYN. Our findings reveal novel molecular pathways involved in KYN's age-associated effects in the bone microenvironment that may be useful translational targets for treating osteoporosis

    Increased Innate Lymphoid Cells in Periodontal Tissue of the Murine Model of Periodontitis: The Role of AMP-Activated Protein Kinase and Relevance for the Human Condition

    Get PDF
    Innate lymphoid cells (ILCs) are master regulators of immune and inflammatory responses, but their own regulatory mechanisms and functional roles of their subtypes (i.e., ILC1s–ILC3s) remain largely unresolved. Interestingly, AMP-activated protein kinase (AMPK), influences inflammatory responses, but its role in modulation of ILCs is not known. Periodontitis is a prevalent disorder with impairment of immune and inflammatory responses contributing importantly to its pathogenesis; however, neither the role of ILCs nor AMPK has been explored in this condition. We tested the hypotheses that (a) periodontitis increases ILCs and expression of relevant cytokines thereby contributing to inflammation and (b) knockdown of AMPK worsens indices of periodontitis in association with further increases in subtypes of ILCs and cytokine expression. The studies utilized wild-type (WT) and AMPK knockout (KO) mice, subjected to ligature-induced periodontitis or sham operation, in association with the use of micro-CT for assessment of bone loss, immunogold electron microscopy to show presence of ILCs in periodontal tissues, flow cytometry for quantitative assessment of subtypes of ILCs and RT-polymerase chain reaction analyses to measure mRNA expression of several relevant cytokines. The results for the first time show (a) presence of each subtype of ILCs in periodontal tissues of sham control and periodontitis animals, (b) that periodontitis is associated with increased frequencies of ILC1s–ILC3s with the effect more marked for ILC2s and differential phenotypic marker expression for ILC3s, (c) that AMPK KO mice display exacerbation of indices of periodontitis in association with further increases in the frequency of subtypes of ILCs with persistence of ILC2s effect, and (d) that periodontitis increased mRNA for interleukin (IL)-33, but not IL-5 or IL-13, in WT mice but expression of these cytokines was markedly increased in AMPK KO mice with periodontitis. Subsequently, we showed that human periodontitis is associated with increases in each ILCs subtype with the effect more marked for ILC2s and that mRNA expressions for IL-33 and IL-5 are markedly greater for sites affected by periodontitis than healthy sites. Collectively, these novel observations indicate a pivotal role for ILCs in pathogenesis of periodontitis and that AMPK is a regulator of their phenotype expression in this condition

    Biomechanics of the canine mandible during bone transport distraction osteogenesis

    Get PDF
    This study compared biomechanical patterns between finite element models (FEMs) and a fresh dog mandible tested under molar and incisal physiological loads in order to clarify the effect of the bone transport distraction osteogenesis (BTDO) surgical process. Three FEMs of dog mandibles were built in order to evaluate the effects of BTDO. The first model evaluated the mandibular response under two physiological loads resembling bite processes. In the second model, a 5.0 cm bone defect was bridged with a bone transport reconstruction plate (BTRP). In the third model, new regenerated bony tissue was incorporated within the defect to mimic the surgical process without the presence of the device. Complementarily, a mandible of a male American foxhound dog was mechanically tested in the laboratory both in the presence and absence of a BTRP, and mechanical responses were measured by attaching rosettes to the bone surface of the mandible to validate the FEM predictions. The relationship between real and predicted values indicates that the stress patterns calculated using FEM are a valid predictor of the biomechanics of the BTDO procedures. The present study provides an interesting correlation between the stiffness of the device and the biomechanical response of the mandible affected for bone transport. Copyright © 2014 by ASME

    In vitro mechanical evaluation of mandibular bone transport devices

    No full text
    Bone transport distraction osteogenesis (BTDO) is a surgical procedure that has been used over the last 30 years for the correction of segmental defects produced mainly by trauma and oncological resections. Application of BTDO has several clinical advantages over traditional surgical techniques. Over the past few years, several BTDO devices have been introduced to reconstruct mandibular bone defects. Based on the location and outline of the defect, each device requires a uniquely shaped reconstruction plate. To date, no biomechanical evaluations of mandibular BTDO devices have been reported in the literature. The present study evaluated the mechanical behavior of three different shaped prototypes of a novel mandibular bone transport reconstruction plate and its transport unit for the reconstruction of segmental bone defects of the mandible by using numerical models complemented with mechanical laboratory tests to characterize strength, fatigue, and stability. The strength test evaluated device failures under extreme loads and was complemented with optimization procedures to improve the biomechanical behavior of the devices. The responses of the prototypes were characterized to improve their design and identify weak and strong regions in order to avoid posterior device failure in clinical applications. Combinations of the numerical and mechanical laboratory results were used to compare and validate the models. In addition, the results remark the importance of reducing the number of animals used in experimental tests by increasing computational and in vitro trials. © VC 2014 by ASME

    Biomechanical characteristics of regenerated cortical bone in the canine mandible

    No full text
    To test the mechanical properties of regenerate cortical bone created using mandibular bone transport (MBT) distraction, five adult male American foxhound dogs underwent unilateral distraction of the mandible with a novel MBT device placed to linearly repair a 30-35 mm bone defect. The animals were sacrificed 12 weeks after the beginning of the consolidation period. Fourteen cylindrical specimens were taken from the inner (lingual) and outer (buccal) plates of the reconstructed mandible and 21 control specimens were removed from the contralateral aspect of the mandible. The mechanical properties of the 35 cylindrical cortical bone specimens were assessed by using a non-destructive pulse ultrasound technique. Results showed that all of the cortical mechanical properties exhibit higher numerical values on the control side than the MBT regenerate side. In addition, both densities and the elastic moduli in the direction of maximum stiffness of the regenerate cortical bone specimens are higher on the lingual side than the buccal side. Interestingly, there is no statistical difference between elastic modulus (E1 and E2) in orthogonal directions throughout the 35 cortical specimens. The data suggest that not only is the regenerate canine cortical bone heterogeneous, but the elastic mechanical properties tend to approximate transverse isotropy at a tissue level, as opposed to control cortical bone, which is orthotropic. In addition, the elastic mechanical properties are higher not only on the control side but also in the lingual anatomical position, suggesting a stress shielding effect from the presence of the reconstruction plate. © 2011 John Wiley & Sons, Ltd

    Delayed Versus Immediate Reconstruction of Mandibular Segmental Defects Using Recombinant Human Bone Morphogenetic Protein 2/Absorbable Collagen Sponge

    Full text link
    Purpose: To compare the efficiency of recombinant human bone morphogenetic protein 2 (rhBMP2)/absorbable collagen sponge (ACS) in the delayed versus immediate reconstruction of mandibular segmental defects in a canine model. Methods: We randomized 11 dogs into 2 groups: immediate reconstruction (group 1, n = 6) and delayed reconstruction (group 2, n = 5). A 35-mm osteoperiosteal segmental defect was created on the left side of the mandible. Reconstruction with rhBMP2/ACS was carried out in the same setting in group 1 or at 4 weeks postoperatively in group 2. The contralateral side acted as an internal control. Animals were monitored both clinically and radiographically throughout the experiment. Twelve weeks after the application of rhBMP2/ACS, the quantity of bone formation was evaluated using regenerate mapping and histomorphometric analysis. Qualitative evaluation was performed based on bone mineral density and Vickers microhardness (μHV) testing. Results: Postoperative seromas were observed in 83.3% of group 1 dogs only. Group 1 showed significantly larger physical dimensions than group 2 in most regenerate zones. Successful regeneration was achieved in 83.3% of group 1 dogs (discontinuity defect was seen in 1 of 6 dogs in group 1). Meanwhile, none of the 5 dogs in group 2 could be considered to have undergone successful regeneration (3 dogs had discontinuity defects, bony union occurred only in the basal third in the fourth dog, and the last dog showed union with only a shell of bone). The percent bone area and percent defect filling were significantly higher in group 1 than in group 2 (percent bone area, 52.4% ± 5.6% in group 1 and 36.6% ± 11.2% in group 2 [P = .02]; percent defect filling, 56.3% ± 5.5% in group 1 and 38.5% ± 10.8% in group 2 [P = .01]). Group 1 showed higher bone mineral density (0.7 ± 0.3 mg/cm(3) in group 1 and 0.4 ± 0.1 mg/cm(3) in group 2, P = .1). Finally, μHV was significantly higher in group 1 (20.3 ± 2.6 μHV) than in group 2 (13.2 ± 2.4 μHV) (P = .01). Conclusions: Delaying the application of rhBMP2/ACS for 4 weeks attenuated the quantity and quality of regenerated bone in mandibular segmental defects
    • …
    corecore