1,063 research outputs found

    Statutory Comment

    Get PDF
    International audienc

    Near-field optical imaging and spectroscopy of a coupled quantum wire-dot structure

    Get PDF
    A coupled GaAs/AlGaAs quantum wire (QWR)-dot sample grown by molecular beam epitaxy on a patterned (311)A GaAs substrate is studied by near-field spectroscopy at a temperature of 10 K with a spectral resolution of 100 µeV. The two-dimensional potential energy profiles of the sample including localized excitonic states caused by structural disorder are determined in photoluminescence measurements with a spatial resolution of 150 nm. One finds a potential barrier of 20 meV between the quantum wire and the embedding quantum well (QW) on the mesa top of the structure. This is due to local thinning of the GaAs layer. In contrast, the wire-dot interface results free of energy barriers. The spatial variation of the GaAs layer thickness provides information on the growth mechanism determined by lateral diffusion of Ga atoms which is modeled by an analytical model. By performing spatially resolved photoluminescence excitation measurements on this wire-dot structure, we present a method for investigating carrier transport in low-dimensional systems: The dot area is used as an optical marker for excitonic diffusion via QW and QWR states. The two-dimensional (2D) and 1D diffusion coefficients are extracted as a function of the temperature and discussed

    Temperature-dependent near-field imaging of delocalized and localized excitons in single quantum wires

    Get PDF
    Summary form only given. Recent microphotoluminescence studies have shown that the low-temperature emission spectra of semiconductor quantum wires are dominated by localized, quasi-zero-dimensional, excitons. This implies that both the optical and transport properties of such quasi-one-dimensional (Q1D) nanostructures are similar to that of a chain of quantum dots. It also hinders the observation of some truly one-dimensional quantum effects, such as the ballistic or diffusive one-dimensional exciton transport, expected in nanostructures containing Q1D excitons that are delocalized over mesoscopic length scales. We present the first experimental evidence for such delocalized excitons in a single quantum wire. A novel coupled quantum wire-dot nanostructure is studied by low temperature near-field photoluminescence (PL) spectroscopy

    Coherent oscillations of electrons in tunnel-coupled wells under ultrafast intersubband excitation

    Full text link
    Ultrafast intersubband excitation of electrons in tunnell-coupled wells is studied depending on the structure parameters, the duration of the infrared pump and the detuning frequency. The temporal dependencies of the photoinduced concentration and dipole moment are obtained for two cases of transitions: from the single ground state to the tunnel-coupled excited states and from the tunnel-coupled states to the single excited state. The peculiarities of dephasing and population relaxation processes are also taken into account. The nonlinear regime of the response is also considered when the splitting energy between the tunnel-coupled levels is renormalized by the photoexcited electron concentration. The dependencies of the period and the amplitude of oscillations on the excitation pulse are presented with a description of the nonlinear oscillations damping.Comment: 8 pages, 12 figure

    Coherent optical generation of nonequilibrium electrons studied via band-to-acceptor luminescence in GaAs

    Get PDF
    Nonequilibrium electrons generated by coherent optical excitation of GaAs are studied in a wide range of carrier density. The electron distribution is monitored via spectrally resolved band-to-acceptor luminescence after continuous-wave, picosecond, or femtosecond laser excitation. Our data demonstrate that the coherent coupling between the laser radiation and the interband polarization and its dephasing strongly influence the initial carrier distribution. The energetic width of carrier generation is broadened due to rapid phase-breaking scattering events during carrier generation. Theoretical results from a Monte Carlo solution of the semiconductor Bloch equations including on the same kinetic level coherent and incoherent phenomena show that the broadening of the electron distribution is introduced mainly in the generation process whereas the recombination of electrons with bound holes makes a minor contribution. The theoretical results are in quantitative agreement with the experimental data

    Simultaneous ultrafast probing of intramolecular vibrations and photoinduced charge carriers in rubrene using broadband time-domain THz spectroscopy

    Get PDF
    Mattijs Koeberg, Euan Hendry, Juleon M. Schins, Hendrik A. van Laarhoven, Cees F. J. Flipse, Klaus Reimann, Michael Woerner, Thomas Elsaesser, and Mischa Bonn, Physical Review B, Vol. 75, article 195216 (2007). "Copyright © 2007 by the American Physical Society."We determine the ultrafast frequency- and time-resolved complex dielectric responses of photoexcited, single-crystal rubrene in the frequency range of 10–30 THz (330–1000 cm−1) using ultrafast broadband THz spectroscopy. In this frequency range, we observe the response of both photogenerated mobile charges and intramolecular vibrational modes simultaneously, both of which vary with time after excitation. The data in conjunction with a theoretical model indicate a dynamic blueshift of the 15.5 THz phonon

    Ultrafast Coherent Generation of Hot Electrons Studied via Band-to-Acceptor Luminescence in GaAs

    Get PDF
    The distribution of hot electrons excited with femtosecond laser pulses is studied via spectrally resolved band-to-acceptor luminescence. Our data demonstrate for the first time that the coherent coupling between the laser pulse and the interband polarization strongly influences the initial carrier distribution. The energetic width of carrier generation is broadened due to rapid phase-breaking scattering events. Theoretical results from a Monte Carlo solution of the semiconductor Bloch equations including on the same kinetic level coherent and incoherent phenomena, are in excellent agreement with the experimental data
    • …
    corecore