291 research outputs found

    Turbulent Diffusion and Turbulent Thermal Diffusion of Aerosols in Stratified Atmospheric Flows

    Full text link
    The paper analyzes the phenomenon of turbulent thermal diffusion in the Earth atmosphere, its relation to the turbulent diffusion and its potential impact on aerosol distribution. This phenomenon was predicted theoretically more than 10 years ago and detected recently in the laboratory experiments. This effect causes a non-diffusive flux of aerosols in the direction of the heat flux and results in formation of long-living aerosol layers in the vicinity of temperature inversions. We demonstrated that the theory of turbulent thermal diffusion explains the GOMOS aerosol observations near the tropopause (i.e., the observed shape of aerosol vertical profiles with elevated concentrations located almost symmetrically with respect to temperature profile). In combination with the derived expression for the dependence of the turbulent thermal diffusion ratio on the turbulent diffusion, these measurements yield an independent method for determining the coefficient of turbulent diffusion at the tropopause. We evaluated the impact of turbulent thermal diffusion to the lower-troposphere vertical profiles of aerosol concentration by means of numerical dispersion modelling, and found a regular upward forcing of aerosols with coarse particles affected stronger than fine aerosols.Comment: 19 pages, 10 figure

    Cell Model of In-cloud Scavenging of Highly Soluble Gases

    Full text link
    We investigate mass transfer during absorption of highly soluble gases such as HNO_{3}, H_{2}O_{2} by stagnant cloud droplets in the presence of inert admixtures. Thermophysical properties of the gases and liquids are assumed to be constant. Diffusion interactions between droplets, caused by the overlap of depleted of soluble gas regions around the neighboring droplets, are taken into account in the approximation of a cellular model of a gas-droplet suspension whereby a suspension is viewed as a periodic structure consisting of the identical spherical cells with periodic boundary conditions at the cell boundary. Using this model we determined temporal and spatial dependencies of the concentration of the soluble trace gas in a gaseous phase and in a droplet and calculated the dependence of the scavenging coefficient on time. It is shown that scavenging of highly soluble gases by cloud droplets leads to essential decrease of soluble trace gas concentration in the interstitial air. We found that scavenging coefficient for gas absorption by cloud droplets remains constant and sharply decreases only at the final stage of absorption. In the calculations we employed gamma size distribution of cloud droplets. It was shown that despite of the comparable values of Henry's law constants for the hydrogen peroxide (H2O2) and the nitric acid (HNO3), the nitric acid is scavenged more effectively by cloud than the hydrogen peroxide due to a major affect of the dissociation reaction on HNO3 scavenging.Comment: 28 pages, including 11 Figures, 1 Tabl

    Turbulent thermal diffusion in a multi-fan turbulence generator with the imposed mean temperature gradient

    Full text link
    We studied experimentally the effect of turbulent thermal diffusion in a multi-fan turbulence generator which produces a nearly homogeneous and isotropic flow with a small mean velocity. Using Particle Image Velocimetry and Image Processing techniques we showed that in a turbulent flow with an imposed mean vertical temperature gradient (stably stratified flow) particles accumulate in the regions with the mean temperature minimum. These experiments detected the effect of turbulent thermal diffusion in a multi-fan turbulence generator for relatively high Reynolds numbers. The experimental results are in compliance with the results of the previous experimental studies of turbulent thermal diffusion in oscillating grids turbulence (Buchholz et al. 2004; Eidelman et al. 2004). We demonstrated that turbulent thermal diffusion is an universal phenomenon. It occurs independently of the method of turbulence generation, and the qualitative behavior of particle spatial distribution in these very different turbulent flows is similar. Competition between turbulent fluxes caused by turbulent thermal diffusion and turbulent diffusion determines the formation of particle inhomogeneities.Comment: 9 pages, 9 figure, REVTEX4, Experiments in Fluids, in pres

    Large-scale instability in a sheared nonhelical turbulence: formation of vortical structures

    Full text link
    We study a large-scale instability in a sheared nonhelical turbulence that causes generation of large-scale vorticity. Three types of the background large-scale flows are considered, i.e., the Couette and Poiseuille flows in a small-scale homogeneous turbulence, and the "log-linear" velocity shear in an inhomogeneous turbulence. It is known that laminar plane Couette flow and antisymmetric mode of laminar plane Poiseuille flow are stable with respect to small perturbations for any Reynolds numbers. We demonstrate that in a small-scale turbulence under certain conditions the large-scale Couette and Poiseuille flows are unstable due to the large-scale instability. This instability causes formation of large-scale vortical structures stretched along the mean sheared velocity. The growth rate of the large-scale instability for the "log-linear" velocity shear is much larger than that for the Couette and Poiseuille background flows. We have found a turbulent analogue of the Tollmien-Schlichting waves in a small-scale sheared turbulence. A mechanism of excitation of turbulent Tollmien-Schlichting waves is associated with a combined effect of the turbulent Reynolds stress-induced generation of perturbations of the mean vorticity and the background sheared motions. These waves can be excited even in a plane Couette flow imposed on a small-scale turbulence when perturbations of mean velocity depend on three spatial coordinates. The energy of these waves is supplied by the small-scale sheared turbulence.Comment: 12 pages, 14 figures, Phys. Rev. E, in pres
    • …
    corecore