44 research outputs found

    TACI, unlike BAFF-R, is solely activated by oligomeric BAFF and APRIL to support survival of activated B cells and plasmablasts.

    Get PDF
    The cytokine BAFF binds to the receptors TACI, BCMA, and BAFF-R on B cells, whereas APRIL binds to TACI and BCMA only. The signaling properties of soluble trimeric BAFF (BAFF 3-mer) were compared with those of higher-order BAFF oligomers. All forms of BAFF bound BAFF-R and TACI, and elicited BAFF-R-dependent signals in primary B cells. In contrast, signaling through TACI in mature B cells or plasmablasts was only achieved by higher-order BAFF and APRIL oligomers, all of which were also po-tent activators of a multimerization-dependent reporter signaling pathway. These results indicate that, although BAFF-R and TACI can provide B cells with similar signals, only BAFF-R, but not TACI, can respond to soluble BAFF 3-mer, which is the main form of BAFF found in circulation. BAFF 60-mer, an efficient TACI agonist, was also detected in plasma of BAFF transgenic and nontransgenic mice and was more than 100-fold more active than BAFF 3-mer for the activation of multimerization-dependent signals. TACI supported survival of activated B cells and plasmablasts in vitro, providing a rational basis to explain the immunoglobulin deficiency reported in TACI-deficient persons

    Cell-penetrating peptides-the Swiss Army knife of cancer vaccines

    No full text
    Therapeutic cancer vaccination is an attractive treatment modality for cancer, but with limitations using existing whole-cell, peptide, or protein vaccines. We propose that a cell-penetrating peptide (CPP)-based vaccine delivering multi-epitopic antigens into antigen-presenting cells (APCs) offers great potential to induce an integrated antitumor immune response and robust, sustained therapeutic effect

    Plasticity in the olfactory bulb of the maternal mouse is prevented by gestational stress

    No full text
    International audienc

    <i>In-vivo</i> gp100-specific Cytotoxic CD8<sup>+</sup> T Cell Killing Assay

    No full text
    Cytotoxic CD8+T lymphocytes (CTLs) represent a crucial component of the adaptive immune system and play a prominent role in the anti-tumor immune responses of both mice and humans. Cytotoxic CD8+T cells are responsible for the lysis of cells expressing peptides associated with MHC class I molecules and derived from infection with a pathogen or from mutated antigens. In order to quantifyin vivothis antigen-specific CD8+T cell killing activity, we use thein vivokilling assay (IVKA). Here, we describe the protocol for the lysis of cells expressing a CD8+T cell melanoma epitope of the hgp10025-33protein (KVPRNQDWL). C57BL/6 recipient mice, receive first target cells, prepared from naive congenic (CD45.1) C57BL/6 spleen cells pulsed with the hgp10025-33peptide and labeled with CFSE and of non-pulsed control cells labeled with Brilliant violet. One day later, the spleen cells of recipient mice are isolated and analyzed by FACS to measure the amount of CFSE cells and Brillant Violet (BV) cells. The percentage of lysis is calculated by the difference between CFSE versus BV. Measuring the ability of antigen-specific CD8+T cells to lyse their antigenin vivois very important to evaluate the adaptive cytotoxic response induced against a pathogen or a tumor antigen

    Protracted Course of Lymphocytic Choriomeningitis Virus WE Infection in Early Life: Induction but Limited Expansion of CD8+ Effector T Cells and Absence of Memory CD8+ T Cells▿

    No full text
    Viral infections in human infants frequently follow a protracted course, with higher viral loads and delayed viral clearance compared to viral infections in older children. To identify the mechanisms responsible for this protracted pattern of infection, we developed an infant infection murine model using the well-characterized lymphocytic choriomeningitis virus (LCMV) WE strain in 2-week-old BALB/c mice. In contrast to adult mice, in which viral clearance occurred as expected 8 days after infection, LCMV titers persisted for several weeks after infection of infant mice. LCMV-specific effector CD8+ T cells were elicited in infant mice and fully functional on day 7 but rapidly waned and could not be recovered from day 12 onwards. We show here that this results from the failure of LCMV-specific CD8+ T cells to expand and the absence of protective LCMV-specific memory CD8+ T cells. Under these early life conditions, viral control and clearance are eventually achieved only through LCMV-specific B cells that contribute to protect infant mice from early death or chronic infection

    A TLR7/8 Agonist-Including DOEPC-Based Cationic Liposome Formulation Mediates Its Adjuvanticity Through the Sustained Recruitment of Highly Activated Monocytes in a Type I IFN-Independent but NF-κB-Dependent Manner

    No full text
    Novel adjuvants, such as Toll-like receptors (TLRs) agonists, are needed for the development of new formulations able to circumvent limitations of current vaccines. Among TLRs, TLR7/8 agonists represent promising candidates, as they are well described to enhance antigen-specific antibody responses and skew immunity toward T helper (TH) 1 responses. We find here that the incorporation of the synthetic TLR7/8 ligand 3M-052 in a cationic DOEPC-based liposome formulation shifts immunity toward TH1 responses and elicits strong and long-lasting germinal center and follicular T helper cell responses in adult mice. This reflects the prolonged recruitment of innate cells toward the site of immunization and homing of activated antigen-loaded monocytes and monocyte-derived dendritic cells toward draining lymph nodes. We further show that this adjuvanticity is independent of type I IFN but NF-κB-dependent. Overall, our data identify TLR7/8 agonists incorporated in liposomes as promising and effective adjuvants to enhance TH1 and germinal center responses

    Homing and adhesion patterns determine the cellular composition of the bone marrow plasma cell niche

    No full text
    According to commonly held concepts, plasma cell (PC) longevity in bone marrow (BM) depends upon their access to survival niches. These are thought to exist in nursery cell types, which support PCs by secreting PC survival factors. To better define PC survival niches and their functioning, we adoptively transferred traceable Blimp-1-(GFP) PCs into recipient mice lacking a proliferation-inducing ligand (APRIL), IL-6, or macrophage migration inhibitory factor. Transferred BMPCs were preferentially associated with Ly-6C(high) monocytes (normalized colocalization index: 9.84), eosinophils (4.29), and megakaryocytes (2.12). Although APRIL was essential for BMPC survival, PC recruitment into the proximity of nursery cells was unimpaired in APRIL-deficient mice, questioning the concept that the same factors account for attraction/retention of PCs as for their local survival. Rather, the order of colocalization with BMPCs (monocytes &gt; eosinophils &gt; megakaryocytes) reflected these cells' relative expression of CXCR4, VLA-4, and LFA-1, the homing and adhesion molecules that direct/retain PCs in the BM. This suggests a scenario wherein the cellular composition of the BMPC niche is defined by a common pattern of attraction/retention on CXCL12-abundant reticular docking cells. Thereby, PCs are directed to associate in a functional BM niche with hematopoietic CXCR4(+)VLA-4(+)LFA-1(+) nursery cells, which provide PC survival factors

    Prenatal stress has no impact on olfactory performances.

    No full text
    <p>(A) Scheme of the experiment. (B) Behavioral performances in a short-term memory task, n = 4 per group. (C) Behavioral performances in the olfactory discrimination learning task. (D) Number of trials to reach the criteria (2 consecutive blocks >85% successful trials) in the olfactory discrimination learning, n = 13 per group.</p
    corecore