37 research outputs found

    Multiplex Detection and SNP Genotyping in a Single Fluorescence Channel

    Get PDF
    Probe-based PCR is widely used for SNP (single nucleotide polymorphism) genotyping and pathogen nucleic acid detection due to its simplicity, sensitivity and cost-effectiveness. However, the multiplex capability of hydrolysis probe-based PCR is normally limited to one target (pathogen or allele) per fluorescence channel. Current fluorescence PCR machines typically have 4–6 channels. We present a strategy permitting the multiplex detection of multiple targets in a single detection channel. The technique is named Multiplex Probe Amplification (MPA). Polymorphisms of the CYP2C9 gene (cytochrome P450, family 2, subfamily C, polypeptide 9, CYP2C9*2) and human papillomavirus sequences HPV16, 18, 31, 52 and 59 were chosen as model targets for testing MPA. The allele status of the CYP2C9*2 determined by MPA was entirely concordant with the reference TaqMan® SNP Genotyping Assays. The four HPV strain sequences could be independently detected in a single fluorescence detection channel. The results validate the multiplex capacity, the simplicity and accuracy of MPA for SNP genotyping and multiplex detection using different probes labeled with the same fluorophore. The technique offers a new way to multiplex in a single detection channel of a closed-tube PCR

    PathogenMip Assay: A Multiplex Pathogen Detection Assay

    Get PDF
    The Molecular Inversion Probe (MIP) assay has been previously applied to a large-scale human SNP detection. Here we describe the PathogenMip Assay, a complete protocol for probe production and applied approaches to pathogen detection. We have demonstrated the utility of this assay with an initial set of 24 probes targeting the most clinically relevant HPV genotypes associated with cervical cancer progression. Probe construction was based on a novel, cost-effective, ligase-based protocol. The assay was validated by performing pyrosequencing and Microarray chip detection in parallel experiments. HPV plasmids were used to validate sensitivity and selectivity of the assay. In addition, 20 genomic DNA extracts from primary tumors were genotyped with the PathogenMip Assay results and were in 100% agreement with conventional sequencing using an L1-based HPV genotyping protocol. The PathogenMip Assay is a widely accessible protocol for producing and using highly discriminating probes, with experimentally validated results in pathogen genotyping, which could potentially be applied to the detection and characterization of any microbe

    Molecular identification of adenovirus causing respiratory tract infection in pediatric patients at the University of Malaya Medical Center

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There are at least 51 adenovirus serotypes (AdV) known to cause human infections. The prevalence of the different human AdV (HAdV) serotypes varies among different regions. Presently, there are no reports of the prevalent HAdV types found in Malaysia. The present study was undertaken to identify the HAdV types associated primarily with respiratory tract infections (RTI) of young children in Malaysia.</p> <p>Methods</p> <p>Archived HAdV isolates from pediatric patients with RTI seen at the University of Malaya Medical Center (UMMC), Kuala Lumpur, Malaysia from 1999 to 2005 were used. Virus isolates were inoculated into cell culture and DNA was extracted when cells showed significant cytopathic effects. AdV partial hexon gene was amplified and the sequences together with other known HAdV hexon gene sequences were used to build phylogenetic trees. Identification of HAdV types found among young children in Malaysia was inferred from the phylograms.</p> <p>Results</p> <p>At least 2,583 pediatric patients with RTI sought consultation and treatment at the UMMC from 1999 to 2005. Among these patients, 48 (< 2%) were positive for HAdV infections. Twenty-seven isolates were recovered and used for the present study. Nineteen of the 27 (~70%) isolates belonged to HAdV species C (HAdV-C) and six (~22%) were of HAdV species B (HAdV-B). Among the HAdV-C species, 14 (~74%) of them were identified as HAdV type 1 (HAdV-1) and HAdV type 2 (HAdV-2), and among the HAdV-B species, HAdV type 3 (HAdV-3) was the most common serotype identified. HAdV-C species also was isolated from throat and rectal swabs of children with hand, foot, and mouth disease (HFMD). Two isolates were identified as corresponding to HAdV-F species from a child with HFMD and a patient with intestinal obstruction.</p> <p>Conclusions</p> <p>HAdV-1 and HAdV-2 were the most common HAdV isolated from pediatric patients who sought treatment for RTI at the UMMC from 1999 to 2005. HAdV-B, mainly HAdV-3, was recovered from ~22% of the patients. These findings provide a benchmark for future studies on the prevalence and epidemiology of HAdV types in Malaysia and in the region.</p

    Connector Inversion Probe Technology: A Powerful One-Primer Multiplex DNA Amplification System for Numerous Scientific Applications

    Get PDF
    We combined components of a previous assay referred to as Molecular Inversion Probe (MIP) with a complete gap filling strategy, creating a versatile powerful one-primer multiplex amplification system. As a proof-of-concept, this novel method, which employs a Connector Inversion Probe (CIPer), was tested as a genetic tool for pathogen diagnosis, typing, and antibiotic resistance screening with two distinct systems: i) a conserved sequence primer system for genotyping Human Papillomavirus (HPV), a cancer-associated viral agent and ii) screening for antibiotic resistance mutations in the bacterial pathogen Neisseria gonorrhoeae. We also discuss future applications and advances of the CIPer technology such as integration with digital amplification and next-generation sequencing methods. Furthermore, we introduce the concept of two-dimension informational barcodes, i.e. “multiplex multiplexing padlocks” (MMPs). For the readers' convenience, we also provide an on-line tutorial with user-interface software application CIP creator 1.0.1, for custom probe generation from virtually any new or established primer-pairs

    Whole-genome genotyping of grape using a panel of microsatellite

    Get PDF
    The use of microsatellite markers in large-scale genetic studies is limited by its low throughput and high cost and labor requirements. Here, we provide a panel of 45 multiplex PCRs for fast and cost-efficient genome-wide fluorescence-based microsatellite analysis in grapevine. The developed multiplex PCRs panel (with up to 15-plex) enables the scoring of 270 loci covering all the grapevine genome (9 to 20 loci/chromosome) using only 45 PCRs and sequencer runs. The 45 multiplex PCRs were validated using a diverse grapevine collection of 207 accessions, selected to represent most of the cultivated Vitis vinifera genetic diversity. Particular attention was paid to quality control throughout the whole process (assay replication, null allele detection, ease of scoring). Genetic diversity summary statistics and features of electrophoretic profiles for each studied marker are provided, as are the genotypes of 25 common cultivars that could be used as references in other studies
    corecore