71 research outputs found

    Translocation t(2;7)(p12;q21-22) with dysregulation of the CDK6 gene mapping to 7q21-22 in a non-Hodgkin’s lymphoma with leukemia

    Get PDF
    Background and Objectives. A female patient presented with splenomegaly and lymphocytosis with atypical lymphoid cell morphology, We identified t(2;7)(p12;q21) prompting studies of the translocation breakpoint and its consequences on protein expression to confirm or otherwise the recently reported involvement of CDK6 and IG kappa genes in the t(2;7) leading to over-expression of CDK6 protein. Design and Methods. A variety of clinical and laboratory techniques including cell marker, cytogenetic and histologic studies were applied in order to establish the diagnosis. Fluorescence in situ hybridization (FISH) and Southern blotting were used for mapping the translocation breakpoint and Western blotting for assessing protein expression. Results. Immunophenotyping showed the presence of a B-cell population with strong expression of FMC7, CD22, CD79b, CD5 and K restricted surface immunoglobulins. Based on morphology and immunophenotypic markers the diagnosis of B-cell nonHodgkin’s lymphoma was made. Karyotyping revealed a clone with t(2;7)(p12;q21-22). Evidence for clonal evolution with additional abnormalities including a deletion of the TP53 was present, We established by FISH and Southern blotting that the breakpoint on 7q21-22 fell in a region 66kb telomeric to the previously reported breakpoint for the t(2;7) and was the same as that observed in a t(7;21). CDK6 protein was over-expressed. The patient received alkylating agents and splenectomy and is alive but the lymphocytosis persists with evidence of disease progression. Interpretations and Conclusions. We have demonstrated that CDK6 expression is dysregulated even when the breakpoint on 7q21-22 is located 66kb upstream from the coding region. Interestingly, the precise assignment of the lymphoma type in our case was not possible even when the splenic histology was analyzed. (C)2002, Ferrata Storti Foundation

    Stable Incretin Mimetics Counter Rapid Deterioration of Bone Quality in Type 1 Diabetes Mellitus.

    Get PDF
    AIMS: Type 1 diabetes mellitus is associated with a high risk for bone fractures. Although bone mass is reduced, bone quality is also dramatically altered in this disorder. However, recent evidences suggest a beneficial effect of the glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) pathways on bone quality. The aims of the present study were to conduct a comprehensive investigation of bone strength at the organ and tissue level; and to ascertain whether enzyme resistant GIP or GLP-1 mimetic could be beneficial in preventing bone fragility in type 1 diabetes mellitus. MATERIALS AND METHODS: Streptozotocin-treated mice were used as a model of type 1 diabetes mellitus. Control and streptozotocin-diabetic animals were treated for 21 days with an enzymatic-resistant GIP peptide ([D-Ala2]GIP) or with liraglutide (each at 25 nmol/kg bw, ip). Bone quality was assessed at the organ and tissue level by microCT, qXRI, 3-point bending, qBEI, nanoindentation and Fourier-transform infrared microspectroscopy. RESULTS: [D-Ala2]GIP and liraglutide treatment did prevent loss of whole bone strength and cortical microstructure in the STZ-injected mice. However, tissue material properties were significantly improved in STZ-injected animals following treatment with [D-Ala(2) ]GIP or liraglutide. CONCLUSIONS: Treatment of STZ-diabetic mice with [D-Ala2]GIP or liraglutide was capable of significantly preventing deterioration of the quality of the bone matrix. Further studies are required to further elucidate the molecular mechanisms involved and to validate whether these findings can be translated to human patients. This article is protected by copyright. All rights reserved

    Pro-apoptotic and antiproliferative activity of human KCNRG, a putative tumor suppressor in 13q14 region

    Get PDF
    Deletion of 13q14.3 and a candidate gene KCNRG (potassium channel regulating gene) is the most frequent chromosomal abnormality in B-cell chronic lymphocytic leukemia and is a common finding in multiple myeloma (MM). KCNRG protein may interfere with the normal assembly of the K+ channel proteins causing the suppression of Kv currents. We aimed to examine possible role of KCNRG haploinsufficiency in chronic lymphocytic leukemia (CLL) and MM cells. We performed detailed genomic analysis of the KCNRG locus; studied effects of the stable overexpression of KCNRG isoforms in RPMI-8226, HL-60, and LnCaP cells; and evaluated relative expression of its transcripts in various human lymphomas. Three MM cell lines and 35 CLL PBL samples were screened for KCNRG mutations. KCNRG exerts growth suppressive and pro-apoptotic effects in HL-60, LnCaP, and RPMI-8226 cells. Direct sequencing of KCNRG exons revealed point mutation delT in RPMI-8226 cell line. Levels of major isoform of KCNRG mRNA are lower in DLBL lymphomas compared to normal PBL samples, while levels of its minor mRNA are decreased across the broad range of the lymphoma types. The haploinsufficiency of KCNRG might be relevant to the progression of CLL and MM at least in a subset of patients

    Mammalian microRNAs: a small world for fine-tuning gene expression

    Get PDF
    The basis of eukaryotic complexity is an intricate genetic architecture where parallel systems are involved in tuning gene expression, via RNA-DNA, RNA-RNA, RNA-protein, and DNA-protein interactions. In higher organisms, about 97% of the transcriptional output is represented by noncoding RNA (ncRNA) encompassing not only rRNA, tRNA, introns, 5′ and 3′ untranslated regions, transposable elements, and intergenic regions, but also a large, rapidly emerging family named microRNAs. MicroRNAs are short 20-22-nucleotide RNA molecules that have been shown to regulate the expression of other genes in a variety of eukaryotic systems. MicroRNAs are formed from larger transcripts that fold to produce hairpin structures and serve as substrates for the cytoplasmic Dicer, a member of the RNase III enzyme family. A recent analysis of the genomic location of human microRNA genes suggested that 50% of microRNA genes are located in cancer-associated genomic regions or in fragile sites. This review focuses on the possible implications of microRNAs in post-transcriptional gene regulation in mammalian diseases, with particular focus on cancer. We argue that developing mouse models for deleted and/or overexpressed microRNAs will be of invaluable interest to decipher the regulatory networks where microRNAs are involved

    Life-threatening hyperkalaemia and multisystem toxicity following first-time exposure to cocaine

    No full text
    Cocaine is a drug notorious for its ability to adversely affect almost any organ in the body and cause a plethora of biochemical abnormalities secondary to its severe vasoconstrictive properties. These abnormalities are not exclusively seen in habitual users or cases of overdose, and may sometimes cause confusion as to the underlying pathology. We describe a case of a young female who presented to the Accident and Emergency department in the early hours of the morning complaining of muscle weakness following the inhalation of a small quantity of an ‘unknown substance’ the previous night. Investigations showed life-threatening hyperkalaemia with a potassium of 9.0 mmol/L, evidence of rhabdomyolysis, acute renal as well as liver failure, disseminated intravascular coagulopathy and a raised troponin of 7000 ng/L, which later peaked to 15,600 ng/L. Four days later, she became hypoxic as a result of adult respiratory distress syndrome with grossly abnormal chest X-ray appearances. Following intensive therapy, she made a dramatic recovery and was discharged from hospital 20 days from presentation. This case highlights the importance of biochemical profiling in patients presenting with possible drug use, even in the absence of significant symptoms. </jats:p

    Genomic and metabolomic patterns segregate with responses to calcium and vitamin D supplementation

    No full text
    Inter-individual response differences to vitamin D and Ca supplementation may be under genetic control through vitamin D and oestrogen receptor genes, which may influence their absorption and/or metabolism. Metabolomic studies on blood and urine from subjects supplemented with Ca and vitamin D reveal different metabolic profiles that segregate with genotype. Genotyping was performed for oestrogen receptor 1 gene (ESR1) and vitamin D receptor gene (VDR) in fifty-six postmenopausal women. Thirty-six women were classified as low bone density as determined by a heel ultrasound scan and twenty women had normal bone density acting as 'controls'. Those with low bone density (LBD) were supplemented with oral Ca and vitamin D and were classified according to whether they were 'responders' or 'non-responders' according to biochemical results before and after therapy compared to controls receiving no supplementation. Metabolomic studies on serum and urine were done for the three groups at 0 and 3 months of therapy using NAIR spectroscopy with pattern recognition. The 'non-responder' group showed a higher frequency of polymorphisms in the ESR1 (codons 10 and 325) and VDR (Bsm1 and Tag1 compared with to the 'responders'. The wild-type genotype for Fok1 was more frequent in those with LBD (70%) compared with the control group (10%). Distinctive patterns of metabolites were displayed by NMR studies at baseline and 3 months of post-treatment, segregating responders from non-responders and controls. Identification of potential 'non-responders' to vitamin D and Ca, before therapy, based on a genomic and/or metabolomic profile would allow targeted selection of optimal therapy on an individual basis.</p

    Delineation of the minimal region of loss at 13q14 in multiple myeloma

    No full text
    Previous studies have focused on the incidence and prognostic implications of 13q14 deletions in multiple myeloma (MM), but none has sought to delineate the minimal common deleted region (CDR). In an effort to do so, dual-color interphase fluorescence in situ hybridization (FISH) was applied on 82 myeloma cases, initially by use of three probes for 13q14 (RBI, D13S319, and DIMS). Deletions were detected in 29/82 (35.4%) cases, and all except one were monoallelic. Subsequently, contiguous YACs, PACs, and a BAC spanning the 13q14-q21 region were employed for deletion mapping in addition to a 13q telomere probe. Large deletions extending to the 13q34 region were found in 55% of the deleted cases, whereas an additional 13.8% showed loss of both 13q34 and 13q 14 regions with retention of 13q21. A CDR of approximately 350 kb was identified at 13q 14 with the proximal border approximately 120 kb centromeric from D13S319, encompassing an area rich in expressed sequence tagged sites and containing DLEU1, DLEU2, and RFP2 genes. Direct sequencing of the RFP2 gene revealed no mutations in six patients and four MM cell lines harboring deletions of the CDR. However, a role for RFP2 in the pathogenesis of MM cannot yet be excluded, given that alternative mechanisms such as haploinsufficiency remain possible. (C) 2003 Wiley-Liss, Inc

    Leptin and insulin growth factor 1:diagnostic markers of the refeeding syndrome and mortality

    No full text
    Refeeding syndrome is difficult to diagnose since the guidelines for identifying those at risk are largely based on subjective clinical parameters and there are no predictive biochemical markers. We examined the suitability of insulin-like growth factor 1 (IGF1) and leptin as markers to identify patients at risk of the refeeding syndrome before initiation of parenteral nutrition (PN). A total of thirty-five consecutive patients referred for commencement of PN were included. Serum leptin and IGF1 were measured before starting PN. Electrolytes, liver and renal function tests were conducted before and daily for 1 week after initiating PN. The primary outcome was a decrease in phosphate 12–36 h after initiating PN. ‘Refeeding index’ (RI) was defined as leptin × IGF1 divided by 2800 to produce a ratio of 1·0 in patients who are well nourished. RI had better sensitivity (78 %; 95 % CI 40, 97 %) and specificity (78 %; 95 % CI 40, 97 %) with a likelihood ratio of 3·4, at a cut-off value of 0·19 for predicting a ≥ 30 % decrease in phosphate concentration within 12–36 h after starting PN, compared with IGF1 or leptin alone. However, IGF1 was a better predictor of mortality than either leptin or the RI. The present study is the first to derive and test the ‘RI’, and find that it is a sensitive and specific predictor of the refeeding syndrome in hospitalised patients before starting PN.</jats:p
    • …
    corecore