14 research outputs found

    Do foliar fungal communities of Norway spruce shift along a tree species diversity gradient in mature European forests?

    Get PDF
    Foliar fungal species are diverse and colonize all plants, though whether forest tree species composition influences the distribution of these fungal communities remains unclear. Fungal communities include quiescent taxa and the functionally important and metabolically active taxa that respond to changes in the environment. To determine fungal community shifts along a tree species diversity gradient, needles of Norway spruce were sampled from trees from four mature European forests. We hypothesized that the fungal communities and specific fungal taxa would correlate with tree species diversity. Furthermore, the active fungal community, and not the total community, would shift along the tree diversity gradient. High-throughput sequencing showed significant differences in the fungal communities in the different forests, and in one forest, tree diversity effects were observed, though this was not a general phenomenon. Our study also suggests that studying the metabolically active community may not provide additional information about community composition or diversity. (C) 2016 The Author(s). Published by Elsevier Ltd

    Fungicidal Control of Lophodermium seditiosum

    No full text

    High-throughput sequencing shows high fungal diversity and community segregation in the rhizospheres of container-grown conifer seedlings

    No full text
    Forest nurseries in Sweden produce ca. 360 million seedlings of Pinus sylvestris L. and Picea abies (L.) Karst. annually. Fungi represent the largest microbial component in rhizospheres and may significantly affect health and, consequently, quality of the seedlings. The aim of this study was to assess fungi focusing on pathogens in roots and the sphagnum peat growth substrate of healthy-looking P. sylvestris and P. abies seedlings from nine forest nurseries situated in northern, central and southern regions of Sweden. We hypothesized that nursery stock and the growth substrate can provide a venue for dissemination of fungal diseases. In each nursery and for each tree species, 100 seedlings with the growth substrate were collected during the dormant period. DNA was isolated from parts of root systems and from samples of the growth substrate, amplified using internal transcribed spacer of rDNA as a marker and 454-sequenced. Clustering at 98.5% similarity of 169,844 high-quality sequences resulted in 619 non-singleton fungal taxa. Although results showed that management practices in forest nurseries generally give a healthy stock, latent establishment of pathogenic fungi in both roots and the growth substrate supported the hypothesis. Furthermore, seedling roots and the growth substrate were inhabited by distinct communities of fungi, and lifestyles of these fungi largely determined community segregation into particular ecological niche

    High-throughput sequencing shows high fungal diversity and community segregation in the rhizospheres of container-grown conifer seedlings

    Get PDF
    Forest nurseries in Sweden produce ca. 360 million seedlings of Pinus sylvestris L. and Picea abies (L.) Karst. annually. Fungi represent the largest microbial component in rhizospheres and may significantly affect health and, consequently, quality of the seedlings. The aim of this study was to assess fungi focusing on pathogens in roots and the sphagnum peat growth substrate of healthy-looking P. sylvestris and P. abies seedlings from nine forest nurseries situated in northern, central and southern regions of Sweden. We hypothesized that nursery stock and the growth substrate can provide a venue for dissemination of fungal diseases. In each nursery and for each tree species, 100 seedlings with the growth substrate were collected during the dormant period. DNA was isolated from parts of root systems and from samples of the growth substrate, amplified using internal transcribed spacer of rDNA as a marker and 454-sequenced. Clustering at 98.5% similarity of 169,844 high-quality sequences resulted in 619 non-singleton fungal taxa. Although results showed that management practices in forest nurseries generally give a healthy stock, latent establishment of pathogenic fungi in both roots and the growth substrate supported the hypothesis. Furthermore, seedling roots and the growth substrate were inhabited by distinct communities of fungi, and lifestyles of these fungi largely determined community segregation into particular ecological niche

    Enniatins of Fusarium

    No full text

    Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments

    Get PDF
    Water is the key resource limiting world agricultural production. Although an impressive number of research reports have been published on plant drought tolerance enhancement via genetic modifications during the last few years, progress has been slower than expected. We suggest a feasible alternative strategy by application of rhizospheric bacteria coevolved with plant roots in harsh environments over millions of years, and harboring adaptive traits improving plant fitness under biotic and abiotic stresses. We show the effect of bacterial priming on wheat drought stress tolerance enhancement, resulting in up to 78% greater plant biomass and five-fold higher survivorship under severe drought. We monitored emissions of seven stress-related volatiles from bacterially-primed drought-stressed wheat seedlings, and demonstrated that three of these volatiles are likely promising candidates for a rapid non-invasive technique to assess crop drought stress and its mitigation in early phases of stress development. We conclude that gauging stress by elicited volatiles provides an effectual platform for rapid screening of potent bacterial strains and that priming with isolates of rhizospheric bacteria from harsh environments is a promising, novel way to improve plant water use efficiency. These new advancements importantly contribute towards solving food security issues in changing climates

    Temporal variations in the emission rates of some benzenoids and terpenoids emitted by wheat plants.

    No full text
    <p>Benzaldehyde (A), β-pinene (B) and geranyl acetone (C) emission rates from leaves of drought-stressed (0, 2, 5, 8 and 10 days without water) wheat plants after priming with <i>Bacillus thuringiensis</i> AZP2 are demonstrated. The error bars indicate +SE for three biological replicates. Statistical analysis and levels of significance as in Fig. 4.</p
    corecore