12 research outputs found
Experimentelle Untersuchung der thermo-katalytischen Reformierung von biogenen Abfallströmen und deren Simulation vom Labor- bis zum Pilotmaßstab
Biomass technologies have become an important approach to fulfill the current needs of energy and fossil oil alternatives, as well as a solution for the waste disposal. Whereas extensive researches have been carried out on the study of the conversion of biogenic waste by pyrolysis technology into biofuels and bio-refineries, which can be utilized for wide range of applications. The pyrolysis technology has a great potential for the conversion of various categories of biomass residuals into bio-fuels and chemicals that may gradually be replacing the crude-oil resources. One of the promising pyrolysis method is the intermediate pyrolysis, which has a high conversion efficiency of the processing of biogenic waste into three forms of biofuels including gasses, liquids and carbonisate. The up-scaling of the pyrolysis technologies is the next step to achieve the industrial application units, and put the pyrolysis on the map of renewable energy on the commercial scale.
The present work discusses the conversion of the biogenic waste through the intermediate pyrolysis integrated with a catalytic reforming process, which is a novel process called Thermo-catalytic Reforming-TCR®. The overall goal of this study is to up-scale the novel technology (TCR®) from the laboratory unit to the pilot unit, and deeply understand the up-scaling process in order to design and manufacturing the industrial TCR®500 unit. Furthermore, this study aims to create a numerical model (a computational fluid dynamic - CFD model) to predict and estimate the temperature profile in the auger reactor and post-reformer, and predict the solid and vapor residence time. The final CFD model show a great accuracy and reliability that can provide a valid platform for further numerical simulation of the intermediate pyrolysis and catalytic reforming kinetics reactions. The up-scaling is investigated experimentally and numerically by a CFD simulation within the laboratory and pilot scale. Whilst the effects of the design differences and the operation conditions are studied from the point of view of the products´ mass balance, products´ qualities, temperature distribution, hydrodynamic flow of the biomass and vapor through the auger reactor and post-reformer.
Additionally, the TCR® system is studied by several experiments with sewage sludge as a feedstock, and investigates the influence of the catalytic reforming temperature on the products yield and quality. The lab and pilot scale of the TCR® show a high productivity and higher quality biofuels compared to the traditional pyrolysis systems. The reforming temperature of 750°C is considered the optimum condition for the production of high quality bio-oil with low oxygen and water content and low acidic compounds. Additionally, the system provides tar free and hydrogen rich gases with high yield, and high quality carbonisate that is suitable for various applications. Raising the reforming temperature and increasing the ash content enhance the catalytic reforming reactions such as gas shifting reaction, Boudouard reaction, steam reforming and secondary cracking of the products, which leads to improve the products quality and increase the hydrogen content of the non-condensable gases.Die Biomassetechnologie ist zu einem wichtigen Ansatz geworden, um den aktuellen Bedarf an Energie und Ölalternativen zu decken, sowie zu eine Lösung für die Abfallentsorgung biogener Stoffe zu schaffen. Umfangreiche Forschungen wurden zur Untersuchung der Umwandlung biogener Abfälle in Biobrennstoffe und Bioraffinerien durch Pyrolysetechnologie durchgeführt, die für ein breites Spektrum von Anwendungen eingesetzt werden können. Die Pyrolysetechnologie hat ein großes Potenzial für die Umwandlung verschiedener Kategorien von Biomasserückständen in Biobrennstoffe und Chemikalien, die die Rohölressourcen ersetzen könnten. Eines der vielversprechendsten Pyrolyseverfahren ist die intermediärer Pyrolyse, die eine hohe Umwandlungseffizienz bei der Verarbeitung biogener Abfälle in drei Formen der Biobrennstoffe (Gasen, flüssigen Chemikalien und Karbonisat) aufweist. Das Up-Scaling der Pyrolyse-Technologien ist der nächste Schritt, um die industrielle größe zu erreichen und die Pyrolysetechnologien weltweit zum Durchbruch zu verhelfen.
Die vorliegende Arbeit behandelt die Umwandlung von biogenen Abfällen durch die in einen katalytischen Reformierungsprozess integrierte intermediärer Pyrolyse. Hierbei handelt es sich um ein neuartiges Verfahren namens Thermo-Catalytic Reforming-TCR®. Das Gesamtziel dieser Studie besteht darin, die neuartige Technologie (TCR®) von der Labor- zur Pilotanlage hochzuskalieren und den Hochskalierungsprozess zu verstehen, um die industrielle TCR®500-Anlage entwerfen und herstellen zu können. Darüber hinaus zielt diese Studie auf die Erstellung eines numerischen Modells (CFD-Modell) zur Vorhersage und Abschätzung des Temperaturprofils im Schneckenreaktor und im Post-Reformer der TCR®- Anlage sowie zur Vorhersage der Feststoff- und der Dampfverweilzeit ab. Das endgültige CFD-Modell weist eine große Genauigkeit und Zuverlässigkeit auf, die eine gültige Plattform für weitere numerische Simulationen der Pyrolyse- und katalytischen Reformierungskinetik-reaktionen bieten kann.
Das Up-Scaling wird experimentell und numerisch durch eine CFD-Simulation im Labor- und Pilotmaßstab untersucht. Während die Auswirkungen der Auslegungsunterschiede und der Betriebsbedingungen unter dem Gesichtspunkt der Massenbilanz der Produkte, der Produktqualitäten, der Temperaturverteilung, der hydrodynamischen Strömung der Biomasse und des Dampfes durch den Schneckenreaktor und den Post-Reformer untersucht werden.
Das TCR®-System wird durch mehrere Versuche mit Klärschlamm als Einsatzstoff untersucht und den Einfluss der Temperatur der katalytischen Reformierung auf die Produktausbeute und -qualität wird untersucht. Der Labor- und Pilotmaßstab des TCR® zeigt im Vergleich zu herkömmlichen Pyrolysesystemen eine hohe Produktivität und eine höhere Qualität der erzeugten Biokraftstoffe. Die Reformierungstemperatur von 750°C gilt als optimale Bedingung für die Produktion eines hochwertigem Bioöls mit niedrigem Sauerstoff- und Wassergehalt und geringen Säuregehalt. Darüber hinaus liefert das System teerfreies und wasserstoffreiches Gas in hoher Ausbeute sowie hochwertiges Karbonisat, dass sich für verschiedene Anwendungen eignet. Die Erhöhung der Reformierungstemperatur und die Erhöhung des Aschegehalts verbessern die katalytischen Reformierungsreaktionen wie Wassergasshiftreaktion, Boudouard-Reaktion, Dampfreformierung und sekundäres Cracken der Produkte
The role of the tumor microenvironment in cerebral glioma progression
sfondo: Il tumore associato macrofagi (TAMs) sono classificati in pro-infiammatorio M1 TAM, e anti-infiammatori M2 TAM. Le cellule staminali glioma (GSC) polarizzano TAM in M2 fenotipo che promuovono la progressione glioma. E voluto studiare l'implicazione della infiltrazione totale e differenziale TAM in gliomi a basso grado (LGG) e in gliomi a alto grado (HGG). Inoltre abbiamo studiato l'effetto di esosomi rilasciati da M1 TAM sul destino delle cellule di glioma. Metodologia: immunoistochimica \ue8 stata eseguita su 11 campioni accoppiati ottenuti da casi di progressione da LGG a HGG. iNOS \ue8 stato utilizzato come marcatore per M1 e CD163 come marcatore per M2. Negli esperimenti in vitro, abbiamo polarizzato monociti umani U937 in M1 fenotipo, poi abbiamo isolato i esosomi dal mezzo M1 condizionato con centrifugazione e filtrazione. Dopo aver aggiunto esosomi M1 di cellule di glioma U251, abbiamo studiato l'attivazione delle cellule glioma con il saggio MTT e abbiamo studiato l'apoptosi delle cellule glioma con la citofluorimetria. Abbiamo usato annessina V come marcatore di apoptosi precoce e ioduro di propidio come marcatore di ritardo apoptosi. Risultati: immunoistochimica ha mostrato uno squilibrio M1 / \u200b\u200bM2 con la maggioranza di essere M2 sia LGG e HGG. La M2 infiltrazione superiore, la prima \ue8 stata la progressione. Gli esperimenti in vitro hanno rivelato l'effetto antitumorale di exosomes M1 che erano in grado di inibire la proliferazione e di indurre apoptosi precoce e tardiva delle cellule di glioma. Conclusione: i nostri dati confermano il ruolo di M2 TAM nella progressione di glioma ed espostano il ruolo tumoricidale di esosomi M1 contro i gliomiBackground: The tumor associated macrophages (TAMs) are classified into pro-inflammatory M1 TAMs, and anti-inflammatory M2 TAMs. Glioma stem cells (GSCs) polarize TAMs into M2 phenotype which promote glioma progression. We aimed to study the implication of the total and differential TAM infiltration in low grade glioma (LGG) and high grade glioma (HGG). Also we investigated the effect of exosomes released from M1 TAMs on the fate of glioma cells. Methodolgy: Immunohistochemistry was performed on 11 paired specimens obtained from cases progressing from LGG to HGG. iNOS was used as a marker for M1 and CD163 as a marker for M2. In the in-vitro experiments, we polarized human monocytes U937 into M1 phenotype, then we isolated the exosomes from the M1conditioned medium by centrifugation and filtration. After adding M1 exosomes to U251 glioma cells, we studied the glioma cell activation by MTT assay and we studied the glioma cell apoptosis by flow-cytometry. We used Annexin V as a marker of early apoptosis and propidium iodide as a marker of late apoptosis. Results: immunohistochemistry showed an M1/M2 imbalance with the majority being M2 in either LGG and HGG. The higher M2 infiltration, the earlier was the progression. The in-vitro experiments revealed the anti-tumor effect of M1 exosomes which were able to inhibit the proliferation and to induce early and late apoptosis of glioma cells. Conclusion: our data confirmed the role of M2 TAMs in glioma progression and exhibited the tumoricidal role of M1 exosomes against gliomas
Awareness of stroke in adults and pediatrics among Fayoum University Hospital workers and medical students
Background: Stroke is a devastating public health problem in Egypt and it is considered the third leading cause of death in the developed countries. The hospital workers are an important source of stroke knowledge. Objective: We aim to assess the stroke knowledge among Fayoum University hospital workers and medical students. Methods: A cross sectional hospital based survey was conducted on (202) participants from Fayoum University hospital workers and medical students. They were divided into two groups: health care providers (HCPs) and non-health care providers (NHCPs) who were interviewed using a structured questionnaire on stroke knowledge in both adults and children. Results: The HCPs represented (65.8%) of the study sample, (93.6%) had knowledge about stroke while (30.7%) only knew that stroke might occur in the pediatric age group; (17.3%) knew the possible causes and only (4.5 %) were oriented that the inborn errors of metabolisms might be a cause of stroke in children. The common known important stroke risk factors reported were hypertension (65.8%); followed by obesity (58.9%), stress (55.9%), and smoking (48.5%). The main source of information was through getting contact with someone having stroke in both groups (34.6%, 21.7% respectively). Eighty five percent of HCPs and 40.6% of NHCPs might transfer the patients to the hospital as a first action seeking for proper treatment. Conclusion: A huge gap of knowledge about stroke symptoms was present between the HCPs and NHCPs indicating the urgent need for a community based stroke awareness programs
High performance electrical driven hotspot detection solution for full chip design using a novel device parameter matching technique
[abstract not available
Effect of Inner Swirl Angle on Flame Stability of a Double-Swirl Burner with Biogas-Methane Co-Firing
This paper studies how the inner swirl angle affects the flame stability of a double-swirl burner with biogas-methane co-firing. Biogas is a renewable fuel that is produced from organic waste by anaerobic digestion, it can be mixed with methane as an act to save methane fuel as well reduce CO_2 emissions. However, biogas has combustion challenges due to its high CO_2 content. The double-swirl burner is a technology that can improve combustion performance and reduce nitrogen oxide emissions. This study investigates different inner swirl angles with various CO_2 fractions in biogas and assesses their effects on flame stability and flame appearance. The paper finds that a higher CO_2 fraction and inner swirl angle make the flame less stable and requires more fuel, and also changes the flame shape. The paper gives insights into improving the double-swirl burner for biogas-methane co-firing