44 research outputs found

    Riparian Management: Back to Basics

    Get PDF
    9 pages

    Coaxial Compound Helicopter for Confined Urban Operations

    Get PDF
    A rotorcraft was designed for military operations in a confined urban environment. The specifications included major increases in useful load, range, and speed relative current aircraft capabilities, with a size constraint based on the dimensions of urban streets and intersections. Analysis showed that this combination of requirements is best satisfied by a coaxial main-rotor configuration, with lift compounding to off-load the rotors at high speed, and ducted fans under the rotor disk for propulsion. The baseline design is described, and the aircraft performance is summarized for utility, attack, MEDEVAC, and cargo delivery missions. The impact on size and performance is examined for a number of excursions, including lift-offset main rotors. Technology development required to achieve this advance in capability is recommended

    The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy

    Get PDF
    AbstractUsing confocal microscopy, onset of the mitochondrial permeability transition (MPT) in individual mitochondria within living cells can be visualized by the redistribution of the cytosolic fluorophore, calcein, into mitochondria. Simultaneously, mitochondria release membrane potential-indicating fluorophores like tetramethylrhodamine methylester. The MPT occurs in several forms of necrotic cell death, including oxidative stress, pH-dependent ischemia/reperfusion injury and Ca2+ ionophore toxicity. Cyclosporin A (CsA) and trifluoperazine block the MPT in these models and prevent cell killing, showing that the MPT is a causative factor in necrotic cell death. During oxidative injury induced by t-butylhydroperoxide, onset of the MPT is preceded by pyridine nucleotide oxidation, mitochondrial generation of reactive oxygen species, and an increase of mitochondrial free Ca2+, all changes that promote the MPT. During tissue ischemia, acidosis develops. Because of acidotic pH, anoxic cell death is substantially delayed. However, when pH is restored to normal after reperfusion (reoxygenation at pH 7.4), cell death occurs rapidly (pH paradox). This killing is caused by pH-dependent onset of the MPT, which is blocked by reperfusion at acidotic pH or with CsA. In isolated mitochondria, toxicants causing Reye’s syndrome, such as salicylate and valproate, induce the MPT. Similarly, salicylate induces a CsA-sensitive MPT and killing of cultured hepatocytes. These in vitro findings suggest that the MPT is the pathophysiological mechanism underlying Reye’s syndrome in vivo. Kroemer and coworkers proposed that the MPT is a critical event in the progression of apoptotic cell death. Using confocal microscopy, the MPT can be directly documented during tumor necrosis factor-α induced apoptosis in hepatocytes. CsA blocks this MPT and prevents apoptosis. The MPT does not occur uniformly during apoptosis. Initially, a small proportion of mitochondria undergo the MPT, which increases to nearly 100% over 1–3 h. A technique based on fluorescence resonance energy transfer can selectively reveal mitochondrial depolarization. After nutrient deprivation, a small fraction of mitochondria spontaneously depolarize and enter an acidic lysosomal compartment, suggesting that the MPT precedes the normal process of mitochondrial autophagy. A model is proposed in which onset of the MPT to increasing numbers of mitochondria within a cell leads progressively to autophagy, apoptosis and necrotic cell death

    Regional expression of HOXA4 along the aorta and its potential role in human abdominal aortic aneurysms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The infrarenal abdominal aorta exhibits increased disease susceptibility relative to other aortic regions. Allograft studies exchanging thoracic and abdominal segments showed that regional susceptibility is maintained regardless of location, suggesting substantial roles for embryological origin, tissue composition and site-specific gene expression.</p> <p>Results</p> <p>We analyzed gene expression with microarrays in baboon aortas, and found that members of the HOX gene family exhibited spatial expression differences. <it>HOXA4 </it>was chosen for further study, since it had decreased expression in the abdominal compared to the thoracic aorta. Western blot analysis from 24 human aortas demonstrated significantly higher HOXA4 protein levels in thoracic compared to abdominal tissues (<it>P </it>< 0.001). Immunohistochemical staining for HOXA4 showed nuclear and perinuclear staining in endothelial and smooth muscle cells in aorta. The <it>HOXA4 </it>transcript levels were significantly decreased in human abdominal aortic aneurysms (AAAs) compared to age-matched non-aneurysmal controls (<it>P </it>< 0.00004). Cultured human aortic endothelial and smooth muscle cells stimulated with INF-γ (an important inflammatory cytokine in AAA pathogenesis) showed decreased levels of HOXA4 protein (<it>P </it>< 0.0007).</p> <p>Conclusions</p> <p>Our results demonstrated spatial variation in expression of HOXA4 in human aortas that persisted into adulthood and that downregulation of <it>HOXA4 </it>expression was associated with AAAs, an important aortic disease of the ageing population.</p

    Riparian Management: Back to Basics

    Get PDF
    9 pages
    corecore