6,003 research outputs found

    Stick-slip motion of solids with dry friction subject to random vibrations and an external field

    Get PDF
    We investigate a model for the dynamics of a solid object, which moves over a randomly vibrating solid surface and is subject to a constant external force. The dry friction between the two solids is modeled phenomenologically as being proportional to the sign of the object's velocity relative to the surface, and therefore shows a discontinuity at zero velocity. Using a path integral approach, we derive analytical expressions for the transition probability of the object's velocity and the stationary distribution of the work done on the object due to the external force. From the latter distribution, we also derive a fluctuation relation for the mechanical work fluctuations, which incorporates the effect of the dry friction.Comment: v1: 23 pages, 9 figures; v2: Reference list corrected; v3: Published version, typos corrected, references adde

    Microstructural characterization of AISI 431 martensitic stainless steel laser-deposited coatings

    Get PDF
    High cooling rates during laser cladding of stainless steels may alter the microstructure and phase constitution of the claddings and consequently change their functional properties. In this research, solidification structures and solid state phase transformation products in single and multi layer AISI 431 martensitic stainless steel coatings deposited by laser cladding at different processing speeds are investigated by optical microscopy, Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), orientation imaging microscopy (OIM), ternary phase diagram, Schaeffler and TTT diagrams. The results of this study show how partitionless solidification and higher solidification rates alter the microstructure and phase constitution of martensitic stainless steel laser deposited coatings. In addition, it is shown that while different cladding speeds have no effect on austenite–martensite orientation relationship in the coatings, increasing the cladding speed has resulted in a reduction of hardness in deposited coatings which is in contrast to the common idea about obtaining higher hardness values at higher cladding speeds.

    Long-term NIR Variability in the UKIDSS Ultra Deep Survey:a new probe of AGN activity at high redshift

    Get PDF
    We present the first attempt to select AGN using long-term NIR variability. By analysing the K-band light curves of all the galaxies in the UKIDSS Ultra Deep Survey, the deepest NIR survey over ~1 sq degree, we have isolated 393 variable AGN candidates. A comparison to other selection techniques shows that only half of the variable sources are also selected using either deep Chandra X-ray imaging or IRAC colour selection, suggesting that using NIR variability can locate AGN that are missed by more standard selection techniques. In particular, we find that long-term NIR variability identifies AGN at low luminosities and in host galaxies with low stellar masses, many of which appear relatively X-ray quiet.Comment: 12 pages, 18 figures, accepted for publication in MNRAS, an error in Equation 1 has been fixed in this versio

    Amplitude equations for systems with long-range interactions

    Full text link
    We derive amplitude equations for interface dynamics in pattern forming systems with long-range interactions. The basic condition for the applicability of the method developed here is that the bulk equations are linear and solvable by integral transforms. We arrive at the interface equation via long-wave asymptotics. As an example, we treat the Grinfeld instability, and we also give a result for the Saffman-Taylor instability. It turns out that the long-range interaction survives the long-wave limit and shows up in the final equation as a nonlocal and nonlinear term, a feature that to our knowledge is not shared by any other known long-wave equation. The form of this particular equation will then allow us to draw conclusions regarding the universal dynamics of systems in which nonlocal effects persist at the level of the amplitude description.Comment: LaTeX source, 12 pages, 4 figures, accepted for Physical Review

    CMS Monte Carlo production in the WLCG computing Grid

    Get PDF
    Monte Carlo production in CMS has received a major boost in performance and scale since the past CHEP06 conference. The production system has been re-engineered in order to incorporate the experience gained in running the previous system and to integrate production with the new CMS event data model, data management system and data processing framework. The system is interfaced to the two major computing Grids used by CMS, the LHC Computing Grid (LCG) and the Open Science Grid (OSG). Operational experience and integration aspects of the new CMS Monte Carlo production system is presented together with an analysis of production statistics. The new system automatically handles job submission, resource monitoring, job queuing, job distribution according to the available resources, data merging, registration of data into the data bookkeeping, data location, data transfer and placement systems. Compared to the previous production system automation, reliability and performance have been considerably improved. A more efficient use of computing resources and a better handling of the inherent Grid unreliability have resulted in an increase of production scale by about an order of magnitude, capable of running in parallel at the order of ten thousand jobs and yielding more than two million events per day

    Characterization of the stretched exponential trap-time distributions in one-dimensional coupled map lattices

    Full text link
    Stretched exponential distributions and relaxation responses are encountered in a wide range of physical systems such as glasses, polymers and spin glasses. As found recently, this type of behavior occurs also for the distribution function of certain trap time in a number of coupled dynamical systems. We analyze a one-dimensional mathematical model of coupled chaotic oscillators which reproduces an experimental set-up of coupled diode-resonators and identify the necessary ingredients for stretched exponential distributions.Comment: 8 pages, 8 figure

    Brownian motion with dry friction: Fokker-Planck approach

    Full text link
    We solve a Langevin equation, first studied by de Gennes, in which there is a solid-solid or dry friction force acting on a Brownian particle in addition to the viscous friction usually considered in the study of Brownian motion. We obtain both the time-dependent propagator of this equation and the velocity correlation function by solving the associated time-dependent Fokker-Planck equation. Exact results are found for the case where only dry friction acts on the particle. For the case where both dry and viscous friction forces are present, series representations of the propagator and correlation function are obtained in terms of parabolic cylinder functions. Similar series representations are also obtained for the case where an external constant force is added to the Langevin equation.Comment: 18 pages, 13 figures (in color

    Parallel updating cellular automaton models of driven diffusive Frenkel-Kontorova-type systems

    Full text link
    Three cellular automaton (CA) models of increasing complexity are introduced to model driven diffusive systems related to the generalized Frenkel-Kontorova (FK) models recently proposed by Braun [Phys.Rev.E58, 1311 (1998)]. The models are defined in terms of parallel updating rules. Simulation results are presented for these models. The features are qualitatively similar to those models defined previously in terms of sequentially updating rules. Essential features of the FK model such as phase transitions, jamming due to atoms in the immobile state, and hysteresis in the relationship between the fraction of atoms in the running state and the bias field are captured. Formulating in terms of parallel updating rules has the advantage that the models can be treated analytically by following the time evolution of the occupation on every site of the lattice. Results of this analytical approach are given for the two simpler models. The steady state properties are found by studying the stable fixed points of a closed set of dynamical equations obtained within the approximation of retaining spatial correlations only upto two nearest neighboring sites. Results are found to be in good agreement with numerical data.Comment: 26 pages, 4 eps figure
    • 

    corecore