6 research outputs found

    Voice Assessments for Detecting Patients with Parkinson’s Diseases in Different Stages

    Get PDF
    Recently, a wide range of speech signal processing algorithms (dysphonia measures) aiming to detect patients with Parkinson’s disease (PD). So we have computed 19 dysphonia measures from sustained vowels collected from 375 voice samples from healthy and people suffer from PD. All the features are analysed and the more relevant ones are selected by the Principal component analysis (PCA) to classify the subjects in 4 classes according to the UPDRS (unified Parkinson’s disease Rating Scale) score. We used k-folds cross validation method with (k=4) validation scheme; 75% for training and 25% for testing, along with the Support Vector Machines (SVM) with its different types of kernels. The best result obtained was 92.5% using the PCA and the linear SVM

    Effective Detection of Parkinson’s Disease at Different Stages using Measurements of Dysphonia

    Get PDF
    This paper addressees the problem of multiclass of Parkinson’s disease by the characteristic features of person’s voice. So we computed 22 dysphonia measures from 375 voice samples of healthy and people suffer from PD. We used the particle swarm optimization (PSO) feature selection method, with random forest and the linear discriminant analysis (LDA) along with the 4-fold cross validation analysis to classify the subjects in 4 classes according to the severity of symptoms. With a classification accuracy score of 95.2%. Promisingly, the proposed diagnosis system might serve as a powerful tool for diagnosing PD, and could also extended for other voice pathologies

    A COUGH-BASED COVID-19 DETECTION SYSTEM USING PCA AND MACHINE LEARNING CLASSIFIERS

    Get PDF
    In 2019, the whole world is facing a health emergency due to the emergence of the coronavirus (COVID-19). About 223 countries are affected by the coronavirus. Medical and health services face difficulties to manage the disease, which requires a significant amount of health system resources. Several artificial intelligence-based systems are designed to automatically detect COVID-19 for limiting the spread of the virus. Researchers have found that this virus has a major impact on voice production due to the respiratory system's dysfunction. In this paper, we investigate and analyze the effectiveness of cough analysis to accurately detect COVID-19. To do so, we performed binary classification, distinguishing positive COVID patients from healthy controls. The records are collected from the Coswara Dataset, a crowdsourcing project from the Indian Institute of Science (IIS). After data collection, we extracted the MFCC from the cough records. These acoustic features are mapped directly to the Decision Tree (DT), k-nearest neighbor (kNN) for k equals to 3, support vector machine (SVM), and deep neural network (DNN), or after a dimensionality reduction using principal component analysis (PCA), with 95 percent variance or 6 principal components. The 3NN classifier with all features has produced the best classification results. It detects COVID-19 patients with an accuracy of 97.48 percent, 96.96 percent f1-score, and 0.95 MCC. Suggesting that this method can accurately distinguish healthy controls and COVID-19 patients

    A cough-based Covid-19 detection with gammatone and mel-frequency cepstral coefficients

    No full text
    Many countries have adopted a public health approach that aims to address the particular challenges faced during the pandemic Coronavirus disease 2019 (COVID-19). Researchers mobilized to manage and limit the spread of the virus, and multiple artificial intelligence-based systems are designed to automatically detect the disease. Among these systems, voice-based ones since the virus have a major impact on voice production due to the respiratory system's dysfunction. In this paper, we investigate and analyze the effectiveness of cough analysis to accurately detect COVID-19. To do so, we distinguished positive COVID patients from healthy controls. After the gammatone cepstral coefficients (GTCC) and the Mel-frequency cepstral coefficients (MFCC) extraction, we have done the feature selection (FS) and classification with multiple machine learning algorithms. By combining all features and the 3-nearest neighbor (3NN) classifier, we achieved the highest classification results. The model is able to detect COVID-19 patients with accuracy and an f1-score above 98 percent. When applying FS, the higher accuracy and F1-score were achieved by the same model and the ReliefF algorithm, we lose 1 percent of accuracy by mapping only 12 features instead of the original 53
    corecore