982 research outputs found

    From the axial line to the walked line: Evaluating the utility of commercial and user-generated street network datasets in space syntax analysis

    Get PDF
    Data availability, reliability and cost are some of the most constraining factors in space syntax analysis and wider commercial acceptance. In recent years user-created Volunteered Geographic Information (VGI) that is free to all via the Internet has gained wider acceptance and proven reliability (Haklay, 2010). Furthermore it has the property of being created by the people who inhabit the spaces being mapped; therefore it captures local knowledge and detail to a far greater degree than commercial mapping agencies. From a space syntax perspective it also relates more closely to the pedestrian network as it is used on foot and captures details of pedestrian routes through the urban fabric that other road-centric data sources ignore. This paper demonstrates the methodological approaches and analytic outcomes of a space syntax sensitivity analysis of Open Street Map (OSM) VGI road network data, the UK national mapping agency Ordnance Survey Integrated Transport Network (ITN) road data and a hand-drawn Axial map for four areas within the Greater London Region. The space syntax segment analysis was completed within the Depthmap application. The segment analysis was completed on the ITN model, OSM model and hand-drawn model separately and then it was carried out on a combined model of the ITN and OSM that integrated all the network elements from both. The integration and comparison of the network models was carried out through the usage of a new algorithm currently under development at University College London that identifies and extracts the differences between two line network datasets (Koukoletsos, forthcoming) and standard GIS processing techniques. The space syntax measures were evaluated on four areas in outer London that are the focus of the Adaptable Suburbs project at the Bartlett School of Graduate Studies. The analysis was carried out using length-weighted angular segment and choice analysis at radii 800m, 2000m and n (Turner, 2007). Comparative statistics were then generated for the areas to evaluate the analysis outcomes of the different network models. The London-wide network that was created through the combination of the OSM and ITN networks had a total length of 32,000km representing an increase of approximately 20% over the Ordnance Survey ITN network. The dramatic increase in network length alone demonstrates the divergent realities of the two mapping techniques and the representation of the world that they capture. It is anticipated that the sensitivity analysis will find that there was no significant difference in the global syntax values between the ITN and OSM and Axial models but at the local level the additional network segments for pedestrian routes within the OSM data will provide greater network accuracy and syntax values that model the reality on the ground better than the Ordnance Survey ITN model. Furthermore it captures potential pedestrian routes that are not present in the other data sets. The work carried out seeks to understand whether Volunteered Geographic Information is a viable alternative to official mapping sources when creating models for analysis of small urban areas. If this proves to be the case such data would provide not only a cost effective alternative to commercially produced data but indeed a more reliable network model for the analysis to be carried out. Open source geographic data have the capability to improve and enrich space syntax analysis whilst removing high price barriers that commercial data sources impose

    PREFACE

    Get PDF
    Abstract. Simply defined, a Smart City is a city overlaid by a digital layer, which is used for the governance of the city. A Smart City uses intelligent technology to enhance our quality of life in urban environments, bringing together people and data from disparate sources such as sensors, demographics, topographic and 3D mapping, Building Information Models and many more. Increasingly, Smart Cities use this data in a variety of ways, to address key challenges related to transportation, communications, air quality, noise, well-being of the citizens, decision making relating to education and health and urban planning, as well as in relation to initiatives such as startups and fostering economic growth and employment within the city. As more data becomes available, the challenges of storing, managing and integrating such data are also multiplied.The first Urban Data Management Symposium (UDMS) was held in 1971 in Bonn, Germany, made the choice of hosting the 6th international conference on Smart Data and Smart Cities (SDSC) in Stuttgart a very natural one. SDSC was established in 2016 as the successor of the UDMS, and this year we celebrate the 40th anniversary of the series of symposia and conferences. The SDSC 2021 will be part of the scientific week on intelligent cities at HFT Stuttgart. Together four events were held during the week of 14th – 17th September 2021, and alongside SDSC participants were invited to attend the "Energy, water and food for the cities of the future" conference, the "LIS-City – liveable, intelligent, and sustainable City" workshop, and the mobility day Stuttgart. Participant interaction – and the ability to attend sessions across the four events – was particularly encouraged. SDSC 2021 itself was organised by the Urban Data Management Society (UDMS www.udms.net), ISPRS and HFT Stuttgart (the University of Applied Science Stuttgart), and Professor Volker Coors Chaired the SDSC committee.As in previous years, three key conference themes were proposed to represent the Smart Cities: Smart Data (sensor network databases, on-the-fly data mining, geographic and urban knowledge modeling and engineering, green computing, urban data analytics and big data, big databases and data management), Smart People (volunteered information, systems for public participation) and Smart Cities (systems of territorial intelligence, systems for city intelligence management, 3D modeling of cities, internet of things, social networks, monitoring systems, mobility and transportation, smart-city-wide telecommunications infrastructure, urban knowledge engineering, urban dashboard design and implementation, new style of urban decision-making systems, geovisualization devoted to urban problems, disaster management systems).This volume consists of 14 papers, which were selected from 41 submissions on the basis of double blind review, with each paper being reviewed by a minimum of three reviewers. These papers present novel research concerning the use of spatial information and communication technologies in Smart Cities, addressing different aspects of Smart Data and Smart Citizens. The selected papers tackle different aspects of Smart Cities: 3D; Citizen Engagement; transport, sustainable mobility; dashboards and web GIS; citizen engagement and participation; sensors; urban decision making.The editors are grateful to the members of the Scientific Committee for their time and valuable comments, which contributed to the high quality of the papers. Reviews were contributed by: Alias Abdul-Rahman, Giorgio Agugiaro, Ken Arroyo Ohori, John Barton, Martina Baucic, Filip Biljecki, Lars Bodum, Pawel Boguslawski, Azedine Boulmakoul, Matteo Caglioni, Caesar Cardenas, Eliseo Clementini, Volker Coors, Youness Dehbi, Abdoulaye Abou Diakité, Adil El Bouziri, Claire Ellul, Tarun Ghawana, Gesquiere Gilles, Didier Grimaldi, Ori Gudes, Stephen Hirtle, Martin Kada, Lamia Karim, Robert Laurini, Christina Mickrenska-Cherneva, Christopher Petit, Alenka Poplin, Ivana Racetin, Dimos Pantazis, Preston Rodrigues, Camilo Leon Sanchez, Genoveva Vargas Solar, Nils Walravens, Parag Wate, Besri Zineb, Sisi Zlatanova. We are also grateful to the work of the local organising committee at HFT Stuttgart, without whom this conference would not have been possible

    PREFACE

    Get PDF
    Abstract. Simply defined, a Smart City is a city overlaid by a digital layer, which is used for the governance of the city. A Smart City uses intelligent technology to enhance our quality of life in urban environments, bringing together people and data from disparate sources such as sensors, demographics, topographic and 3D mapping, Building Information Models and many more. Increasingly, Smart Cities use this data in a variety of ways, to address key challenges related to transportation, communications, air quality, noise, well-being of the citizens, decision making relating to education and health and urban planning, as well as in relation to initiatives such as startups and fostering economic growth and employment within the city. As more data becomes available, the challenges of storing, managing and integrating such data are also multiplied.The first Urban Data Management Symposium (UDMS) was held in 1971 in Bonn, Germany, made the choice of hosting the 6th international conference on Smart Data and Smart Cities (SDSC) in Stuttgart a very natural one. SDSC was established in 2016 as the successor of the UDMS, and this year we celebrate the 40th anniversary of the series of symposia and conferences. The SDSC 2021 will be part of the scientific week on intelligent cities at HFT Stuttgart. Together four events were held during the week of 14th – 17th September 2021, and alongside SDSC participants were invited to attend the "Energy, water and food for the cities of the future" conference, the "LIS-City – liveable, intelligent, and sustainable City" workshop, and the mobility day Stuttgart. Participant interaction – and the ability to attend sessions across the four events – was particularly encouraged. SDSC 2021 itself was organised by the Urban Data Management Society (UDMS www.udms.net), ISPRS and HFT Stuttgart (the University of Applied Science Stuttgart), and Professor Volker Coors Chaired the SDSC committee.As in previous years, three key conference themes were proposed to represent the Smart Cities: Smart Data (sensor network databases, on-the-fly data mining, geographic and urban knowledge modeling and engineering, green computing, urban data analytics and big data, big databases and data management), Smart People (volunteered information, systems for public participation) and Smart Cities (systems of territorial intelligence, systems for city intelligence management, 3D modeling of cities, internet of things, social networks, monitoring systems, mobility and transportation, smart-city-wide telecommunications infrastructure, urban knowledge engineering, urban dashboard design and implementation, new style of urban decision-making systems, geovisualization devoted to urban problems, disaster management systems).This volume consists of 18 papers, which were selected from 41 submissions on the basis of peer review. These papers present novel research concerning the use of spatial information and communication technologies in Smart Cities, addressing different aspects relating to Smart Data. Selected papers tackle different aspects of Smart Cities: transport, sustainable mobility; dashboards and web GIS; citizen engagement and participation; sensors; urban decision making.The editors are grateful to the members of the Scientific Committee for their time and valuable comments, which contributed to the high quality of the papers. Reviews were contributed by: Alias Abdul-Rahman, Giorgio Agugiaro, Ken Arroyo Ohori, John Barton, Martina Baucic, Filip Biljecki, Lars Bodum, Pawel Boguslawski, Azedine Boulmakoul, Matteo Caglioni, Caesar Cardenas, Eliseo Clementini, Volker Coors, Youness Dehbi, Abdoulaye Abou Diakité, Adil El Bouziri, Claire Ellul, Tarun Ghawana, Gesquiere Gilles, Didier Grimaldi, Ori Gudes, Stephen Hirtle, Martin Kada, Lamia Karim, Robert Laurini, Christina Mickrenska-Cherneva, Christopher Petit, Alenka Poplin, Ivana Racetin, Dimos Pantazis, Preston Rodrigues, Camilo Leon Sanchez, Genoveva Vargas Solar, Nils Walravens, Parag Wate, Besri Zineb, Sisi Zlatanova. We are also grateful to the work of the local organising committee at HFT Stuttgart, without whom this conference would not have been possible

    PREFACE

    Get PDF
    n/

    PREFACE

    Get PDF
    n/

    Picture-Hanging Puzzles

    Get PDF
    We show how to hang a picture by wrapping rope around n nails, making a polynomial number of twists, such that the picture falls whenever any k out of the n nails get removed, and the picture remains hanging when fewer than k nails get removed. This construction makes for some fun mathematical magic performances. More generally, we characterize the possible Boolean functions characterizing when the picture falls in terms of which nails get removed as all monotone Boolean functions. This construction requires an exponential number of twists in the worst case, but exponential complexity is almost always necessary for general functions.Comment: 18 pages, 8 figures, 11 puzzles. Journal version of FUN 2012 pape
    • …
    corecore