1,410 research outputs found

    Foreshock sequence of the 1992 Landers, California, earthquake and its implications for earthquake nucleation

    Get PDF
    The June 28, 1992, Landers, California, earthquake(Mw=7.3) was preceded for about 7 hours by a foreshock sequence consisting of at least 28 events. In this study we examine the geometry and temporal development of the foreshocks using high-precision locations based on cross correlation of waveforms recorded at nearby stations. By aligning waveforms, rather than trying to obtain travel time picks for each event independently, we are able to improve the timing accuracy greatly and to make very accurate travel time picks even for emergent arrivals. We perform a joint relocation using the improved travel times and reduce the relative location errors to less than 100m horizontally and less than 200m vertically. With the improved locations the geometry of the foreshock sequence becomes clear. The Landers foreshocks occurred at a fight step of about 500m in the mainshock fault plane. The nucleation zone as defined by the foreshock sequence is southeast trending to the south and nearly north trending to the north of the right step. This geometry is confirmed by the focal mechanisms of the foreshock sequence, which are rightlateral and follow the trend as determined by the foreshock locations on the two straight segments of the fault, and are rotated clockwise for foreshocks that occur within the step. The extent of the foreshock sequence is approximately 1 km both vertically and horizontally. Modeling of the Coulomb stress changes due to all previous foreshocks indicates that the foreshocks probably did not trigger each other. This result is particularly clear for the Mw=4.4 immediate foreshock. Since stress transfer in the sequence appears not to have played a significant role in its development, we infer an underlying aseismic nucleation process, probably aseismic creep. Other studies have shown that earthquake nucleation may be controlled by fault zone irregularities. This appears to be true in the case of the Landers earthquake, although the size of the irregularity is so small that it is not detectable by standard location techniques

    Foreshock sequence of the 1992 Landers, California, earthquake and its implications for earthquake nucleation

    Get PDF
    The June 28, 1992, Landers, California, earthquake(Mw=7.3) was preceded for about 7 hours by a foreshock sequence consisting of at least 28 events. In this study we examine the geometry and temporal development of the foreshocks using high-precision locations based on cross correlation of waveforms recorded at nearby stations. By aligning waveforms, rather than trying to obtain travel time picks for each event independently, we are able to improve the timing accuracy greatly and to make very accurate travel time picks even for emergent arrivals. We perform a joint relocation using the improved travel times and reduce the relative location errors to less than 100m horizontally and less than 200m vertically. With the improved locations the geometry of the foreshock sequence becomes clear. The Landers foreshocks occurred at a fight step of about 500m in the mainshock fault plane. The nucleation zone as defined by the foreshock sequence is southeast trending to the south and nearly north trending to the north of the right step. This geometry is confirmed by the focal mechanisms of the foreshock sequence, which are rightlateral and follow the trend as determined by the foreshock locations on the two straight segments of the fault, and are rotated clockwise for foreshocks that occur within the step. The extent of the foreshock sequence is approximately 1 km both vertically and horizontally. Modeling of the Coulomb stress changes due to all previous foreshocks indicates that the foreshocks probably did not trigger each other. This result is particularly clear for the Mw=4.4 immediate foreshock. Since stress transfer in the sequence appears not to have played a significant role in its development, we infer an underlying aseismic nucleation process, probably aseismic creep. Other studies have shown that earthquake nucleation may be controlled by fault zone irregularities. This appears to be true in the case of the Landers earthquake, although the size of the irregularity is so small that it is not detectable by standard location techniques

    The Bolocam Galactic Plane Survey. XIV. Physical Properties of Massive Starless and Star Forming Clumps

    Full text link
    We sort 46834683 molecular clouds between 10∘<ℓ<65∘10^\circ< \ell <65^\circ from the Bolocam Galactic Plane Survey based on observational diagnostics of star formation activity: compact 7070 μm\mu{\rm m} sources, mid-IR color-selected YSOs, H2O{\rm H_2O} and CH3OH{\rm CH_3OH} masers, and UCHII regions. We also present a combined NH3{\rm NH_3}-derived gas kinetic temperature and H2O{\rm H_2O} maser catalog for 17881788 clumps from our own GBT 100m observations and from the literature. We identify a subsample of 22232223 (47.5%47.5\%) starless clump candidates, the largest and most robust sample identified from a blind survey to date. Distributions of flux density, flux concentration, solid angle, kinetic temperature, column density, radius, and mass show strong (>1>1 dex) progressions when sorted by star formation indicator. The median starless clump candidate is marginally sub-virial (α∼0.7\alpha \sim 0.7) with >75%>75\% of clumps with known distance being gravitationally bound (α<2\alpha < 2). These samples show a statistically significant increase in the median clump mass of ΔM∼170−370\Delta M \sim 170-370 M⊙_\odot from the starless candidates to clumps associated with protostars. This trend could be due to (i) mass growth of the clumps at M˙∼200−440\dot{M}\sim200-440 Msun Myr−1^{-1} for an average free-fall 0.80.8 Myr time-scale, (ii) a systematic factor of two increase in dust opacity from starless to protostellar phases, (iii) and/or a variation in the ratio of starless to protostellar clump lifetime that scales as ∼M−0.4\sim M^{-0.4}. By comparing to the observed number of CH3OH{\rm CH_3OH} maser containing clumps we estimate the phase-lifetime of massive (M>103M>10^3 M⊙_\odot) starless clumps to be 0.37±0.08 Myr (M/103 M⊙)−10.37 \pm 0.08 \ {\rm Myr} \ (M/10^3 \ {\rm M}_\odot)^{-1}; the majority (M<450M<450 M⊙_\odot) have phase-lifetimes longer than their average free-fall time.Comment: Accepted for publication in ApJ; 33 pages; 22 figures; 7 table

    Low-Silica and High-Calcium Stone in the Newman Limestone (Mississippian) on Pine Mountain, Letcher County, Southeastern Kentucky

    Get PDF
    The coal industry of Kentucky is an important market for limestone. Coal producers use limestone as rock dust for explosion abatement in underground coal mines and as a neutralizing agent in surface-mine reclamation and acid-drainage control. Haulage-road construction and maintenance require crushed stone. Coal-bearing rocks of Pennsylvanian age in the Eastern Kentucky Coal Field generally do not contain limestones that are sufficiently thick to quarry or mine economically, but in the southeastern part of the coal field, fault movement has brought the Newman Limestone to the surface along Pine Mountain. The Newman was sampled at three sites in Letcher County to determine its chemical quality and potential for industrial use, particularly as a source of low-silica rock dust. Analysis of the foot-by-foot samples shows that the Newman contains several zones of low-silica stone, 10 to 39 feet thick. A few intervals of high-calcium limestone, 12 to 24 feet thick, coincide with or occur in the low-silica zones. The deposits of low-silica and high-calcium stone are thickest in the southwestern part of Letcher County and commonly thin northeastward. The thicker deposits of chemically pure limestone and dolomite may be an economically exploitable source of rock dust for underground coal mines, and a source of stone for surface-mine reclamation and acid-drainage control. Production from deposits in the Newman, however, will be complicated by the steep southeastward to southward dip (20 to 42°) of the beds, possible displacement along small faults, and fracturing of the limestone

    First results of a study of TeV emission from GRBs in Milagrito

    Get PDF
    Milagrito, a detector sensitive to γ-rays at TeV energies, monitored the northern sky during the period February 1997 through May 1998. With a large field of view and high duty cycle, this instrument was used to perform a search for TeV counterparts to γ-ray bursts. Within the Milagrito field of view 54 γ-ray bursts at keV energies were observed by the Burst And Transient Satellite Experiment (BATSE) aboard the Compton Gamma-Ray Observatory. This paper describes the results of a preliminary analysis to search for TeV emission correlated with BATSE detected bursts. Milagrito detected an excess of events coincident both spatially and temporally with GRB 970417a, with chance probability 2.8×10−5 within the BATSE error radius. No other significant correlations were detected. Since 54 bursts were examined the chance probability of observing an excess with this significance in any of these bursts is 1.5×10−3. The statistical aspects and physical implications of this result are discussed

    Milagro: A TeV observatory for gamma-ray bursts

    Get PDF
    Observation of prompt TeV γ-rays from GRBs requires a new type of detector to overcome the low duty factor and small field of view of current TeV observatories. Milagro is such a new type of very high energy (\u3e a few 100 GeV) gamma-ray observatory, which has a large field of view of \u3e1 steradian and 24 hours/day operation. Milagrito, a prototype for Milagro, was operated from February 1997 to May 1998. During the summer of 1998, Milagrito was dismantled and Milagro was built. Both detectors use a 80 m×60 m×8 m pond of water in which a 3 m×3 m grid of photomultiplier tubes detects the Cherenkov light produced in the water by the relativistic particles in extensive air showers. Milagrito was smaller and had only one layer of photomultipliers, but allowed the technique to be tested. Milagrito observations of the Moon’s shadow and Mrk 501 are consistent with the Monte Carlo prediction of the telescope’s parameters, such as effective area and angular resolution. Milagro will have improved flux sensitivity over Milagrito due to larger effective area, better angular resolution and cosmic-ray background rejection

    Milagro: A TeV gamma-ray monitor of the Northern Hemisphere Sky

    Get PDF
    A new type of very high energy (\u3e a few 100 GeV) gamma-ray observatory, Milagro, has been built with a large field of view of \u3e1 steradian and nearly 24 hours/day operation. Milagrito, a prototype for Milagro, was operated from February 1997 to May 1998. During the summer of 1998, Milagrito was dismantled and Milagro was built. Both detectors use a 80 m×60 m×8 mpond of water in which a 3 m×3 m grid of photomultiplier tubes detects the Cherenkov light produced in the water by the relativistic particles in extensive air showers. Milagrito was smaller and had only one layer of photomultipliers, but allowed the technique to be tested. Milagrito observations of the Moon’s shadow and Mrk 501 are consistent with the Monte Carlo prediction of the telescopes parameters, such as effective area and angular resolution. Milagro is larger and consists of two layers of photomultiplier tubes. The bottom layer detects penetrating particles that are used to reject the background of cosmic-ray initiated showers

    Results from the Milagrito experiment

    Get PDF
    The Milagro water Cherenkov detector near Los Alamos, New Mexico is the first air shower detector capable of continuously monitoring the sky at energies between 500 GeV and 20 TeV. Preliminary results of the Milagro experiment are presented. A predecessor of the Milagro detector, Milagrito, was operational from February 1997 to May 1998. Milagrito consisted of 228 8″ photomultiplier tubes (PMTs) arranged in a grid with a 2.8 meter spacing and submerged in 1–2 meters of water. During its operation, Milagrito collected in excess of 9 billion events with a median energy of about 3 TeV. The detector’s sensitivity extends below 1 TeV for showers from near zenith. The results of an all sky search for the Milagrito data for both transient and DC sources will be presented, including the Crab Nebula and active galaxies Markarian 501 and 421, which are known sources of TeV gamma-rays. Also presented will be a study of the TeV emission from gamma ray bursts (GRBs) in Milagrito’s field of view detected by the BATSE experiment on the Compton Gamma-Ray Observatory

    The Milagro gamma-ray observatory

    Get PDF
    The Milagro water Cherenkov detector began full operation in January 2000. This detector is capable of monitoring the Northern sky at energies above 500 GeV for sources of equivalent strength to the Crab Nebula over one year of integration. We report on the current performance and sensitivity of Milagro

    TeV Gamma-Ray Sources from a Survey of the Galactic Plane with Milagro

    Full text link
    A survey of Galactic gamma-ray sources at a median energy of ~20 TeV has been performed using the Milagro Gamma Ray Observatory. Eight candidate sources of TeV emission are detected with pre-trials significance >4.5σ>4.5\sigma in the region of Galactic longitude l∈[30∘,220∘]l\in[30^\circ,220^\circ] and latitude b∈[−10∘,10∘]b\in[-10^\circ,10^\circ]. Four of these sources, including the Crab nebula and the recently published MGRO J2019+37, are observed with significances >4σ>4\sigma after accounting for the trials involved in searching the 3800 square degree region. All four of these sources are also coincident with EGRET sources. Two of the lower significance sources are coincident with EGRET sources and one of these sources is Geminga. The other two candidates are in the Cygnus region of the Galaxy. Several of the sources appear to be spatially extended. The fluxes of the sources at 20 TeV range from ~25% of the Crab flux to nearly as bright as the Crab.Comment: Submitted to Ap
    • …
    corecore