23 research outputs found

    Enhancement of Bacillus subtilis Lipopeptide Biosurfactants Production through Optimization of Medium Composition and Adequate Control of Aeration

    Get PDF
    Interest in biosurfactants has increased considerably in recent years, as they are potentially used in many commercial applications in petroleum, pharmaceuticals, biomedical, and food processing industries. Since improvement of their production was of great importance to reduce the final coast, cultural conditions were analyzed to optimize biosurfactants production from Bacillus subtilis SPB1 strain. A high yield of biosurfactants was obtained from a culture of B. subtilis using carbohydrate substrate as a carbon source; among carbohydrates, glucose enhanced the best surfactin production. The optimum glucose concentration was 40 g/L. Higher amount of biosurfactants was obtained using 5 g/L of urea as organic nitrogen source and applying C/N ratio of 7 with ammonium chloride as inorganic nitrogen source. The highest amount of biosurfactants was recorded with the addition of 2% kerosene. Moreover, it was shown, using an automated full-controlled 2.6 L fermenter, that aeration of the medium, which affected strongly the growth regulated biosurfactants synthesis by the producing cell. So that, low or high aerations lead to a decrease of biosurfactants synthesis yields. It was found that when using dissolved oxygen saturation of the medium at 30%, biosurfactants production reached 4.92 g/L

    Optimization of the Nutritional Parameters for Enhanced Production of B. subtilis SPB1 Biosurfactant in Submerged Culture Using Response Surface Methodology

    Get PDF
    Nutritional requirements can contribute considerably to the production cost and the bioprocess economics. Media optimisation using response surface methodology is one of the used methods to ameliorate the bioprocess economics. In the present study, biosurfactant production by Bacillus subtilis SPB1 was effectively enhanced by response surface methodology. A Plackett-Burman-based statistical screening procedure was adopted to determine the most important factor affecting lipopeptide production. Eleven variables are screened and results show that glucose, K2HPO4, and urea concentrations influence the most biosurfactant production. A Central Composite Design was conducted to optimize the three selected factors. Statistical analyses of the data of model fitting were done by using NemrodW. Results show a maximum predicted biosurfactant concentration of 2.93 (±0.32) g/L when using 15 g/L glucose, 6 g/L urea, and 1 g/L K2HPO4. The predicted value is approximately 1.65 much higher than the original production determined by the conventional one-factor-at-a-time optimization method

    Investigation of Antimicrobial Activity and Statistical Optimization of Bacillus subtilis SPB1 Biosurfactant Production in Solid-State Fermentation

    Get PDF
    During the last years, several applications of biosurfactants with medical purposes have been reported. Biosurfactants are considered relevant molecules for applications in combating many diseases. However, their use is currently extremely limited due to their high cost in relation to that of chemical surfactants. Use of inexpensive substrates can drastically decrease its production cost. Here, twelve solid substrates were screened for the production of Bacillus subtilis SPB1 biosurfactant and the maximum yield was found with millet. A Plackett-Burman design was then used to evaluate the effects of five variables (temperature, moisture, initial pH, inoculum age, and inoculum size). Statistical analyses showed that temperature, inoculum age, and moisture content had significantly positive effect on SPB1 biosurfactant production. Their values were further optimized using a central composite design and a response surface methodology. The optimal conditions of temperature, inoculum age, and moisture content obtained under the conditions of study were 37°C, 14 h, and 88%, respectively. The evaluation of the antimicrobial activity of this compound was carried out against 11 bacteria and 8 fungi. The results demonstrated that this biosurfactant exhibited an important antimicrobial activity against microorganisms with multidrug-resistant profiles. Its activity was very effective against Staphylococcus aureus, Staphylococcus xylosus, Enterococcus faecalis, Klebsiella pneumonia, and so forth

    Investigation of Antimicrobial Activity and Statistical Optimization of Bacillus subtilis SPB1 Biosurfactant Production in Solid-State Fermentation

    Get PDF
    During the last years, several applications of biosurfactants with medical purposes have been reported. Biosurfactants are considered relevant molecules for applications in combating many diseases. However, their use is currently extremely limited due to their high cost in relation to that of chemical surfactants. Use of inexpensive substrates can drastically decrease its production cost. Here, twelve solid substrates were screened for the production of Bacillus subtilis SPB1 biosurfactant and the maximum yield was found with millet. A Plackett-Burman design was then used to evaluate the effects of five variables (temperature, moisture, initial pH, inoculum age, and inoculum size). Statistical analyses showed that temperature, inoculum age, and moisture content had significantly positive effect on SPB1 biosurfactant production. Their values were further optimized using a central composite design and a response surface methodology. The optimal conditions of temperature, inoculum age, and moisture content obtained under the conditions of study were 37 • C, 14 h, and 88%, respectively. The evaluation of the antimicrobial activity of this compound was carried out against 11 bacteria and 8 fungi. The results demonstrated that this biosurfactant exhibited an important antimicrobial activity against microorganisms with multidrug-resistant profiles. Its activity was very effective against Staphylococcus aureus, Staphylococcus xylosus, Enterococcus faecalis, Klebsiella pneumonia, and so forth

    Profiling beneficial phytochemicals in a potato somatic hybrid for tuber peels processing: phenolic acids and anthocyanins composition

    Get PDF
    The purpose of this study was to characterize the peels of a CN1 somatic hybrid obtained from two dihaploid potato lines (Cardinal H14 and Nicola H1) in terms of the health‐promoting phenolic compounds (phenolic acids and anthocyanins). The CN1 hybrid is defined by a pink tuber skin color making it different from the light‐yellow‐skinned “Spunta,” which is the most commonly grown potato cultivar in Tunisia. Oven‐dried peel samples derived from CN1 hybrid and cv. Spunta were ground, and phenolic compounds were extracted with water or methanol for quantification. Lyophilized peels were used for the phenolic acid and anthocyanin analyses. Higher total quantities of phenolic compounds were recovered in methanol extracts compared with water extracts. A slightly higher concentration of phenolic acids (100 mg/100 g DW) was obtained in the lyophilized peels extract of CN1 hybrid than in the cv. Spunta corresponding sample (83 mg/100 g DW). The profiles of the chlorogenic acid isomers were almost identical in both of CN1 hybrid and cv. Spunta. Caffeic acid (CA) and three caffeoylquinic acids (CQAs): 3‐CQA, 4‐CQA, and 5‐CQA, were identified from both genotypes, 5‐CQA being the dominant form in both potatoes. Since the CN1 hybrid has a pink skin color, its anthocyanin profile was also determined. The anthocyanin quantity in the CN1 peels was 5.07 mg/100 g DW, involving six different anthocyanins that were identified within the extract, namely, Pelargonidin‐3‐rutinoside‐5‐glucoside, peonidin‐3‐rutinoside‐5‐glucoside, coumaroyl ester of pelargonidin‐3‐rutinoside‐5‐glucoside, coumaroyl ester of peonidin‐3‐rutinoside‐5‐glucoside, feruloyl ester of pelargonidin‐3‐rutinoside‐5‐glucoside, and feruloyl ester of peonidin‐3‐rutinoside‐5‐glucoside. These results suggest that the peel waste of CN1 somatic hybrid can be considered as a promising source of high‐value compounds for food industry

    Profiling beneficial phytochemicals in a potato somatic hybrid for tuber peels processing: phenolic acids and anthocyanins composition

    Get PDF
    The purpose of this study was to characterize the peels of a CN1 somatic hybrid obtained from two dihaploid potato lines (Cardinal H14 and Nicola H1) in terms of the health-promoting phenolic compounds (phenolic acids and anthocyanins). The CN1 hybrid is defined by a pink tuber skin color making it different from the light-yellow-skinned "Spunta," which is the most commonly grown potato cultivar in Tunisia. Oven-dried peel samples derived from CN1 hybrid and cv. Spunta were ground, and phenolic compounds were extracted with water or methanol for quantification. Lyophilized peels were used for the phenolic acid and anthocyanin analyses. Higher total quantities of phenolic compounds were recovered in methanol extracts compared with water extracts. A slightly higher concentration of phenolic acids (100 mg/100 g DW) was obtained in the lyophilized peels extract of CN1 hybrid than in the cv. Spunta corresponding sample (83 mg/100 g DW). The profiles of the chlorogenic acid isomers were almost identical in both of CN1 hybrid and cv. Spunta. Caffeic acid (CA) and three caffeoylquinic acids (CQAs): 3-CQA, 4-CQA, and 5-CQA, were identified from both genotypes, 5-CQA being the dominant form in both potatoes. Since the CN1 hybrid has a pink skin color, its anthocyanin profile was also determined. The anthocyanin quantity in the CN1 peels was 5.07 mg/100 g DW, involving six different anthocyanins that were identified within the extract, namely, Pelargonidin-3-rutinoside-5-glucoside, peonidin-3-rutinoside-5-glucoside, coumaroyl ester of pelargonidin-3-rutinoside-5-glucoside, coumaroyl ester of peonidin-3-rutinoside-5-glucoside, feruloyl ester of pelargonidin-3-rutinoside-5-glucoside, and feruloyl ester of peonidin-3-rutinoside-5-glucoside. These results suggest that the peel waste of CN1 somatic hybrid can be considered as a promising source of high-value compounds for food industry

    Clarification of pomegranate juice by ultrafiltration: study of juice quality and of the fouling mechanism

    No full text
    Introduction. Ultrafiltration (UF) is a single-unit operation for the clarification and fining of fruit juices. The purpose of the UF is to remove suspended solids as well as haze-inducing and turbidity-causing substances to obtain a clear juice during storage. Specifically, the polymerization of phenolic compounds and their interaction with other components (e.g., proteins) could cause a haze complex and turbidity in fruit juices, which can foul the ultrafiltration membrane. Materials and methods. Fresh pomegranate juice was clarified by the ultrafiltration process on a laboratory scale. In experimental tests performed according to the total recycle and the batch concentration mode, the effects of transmembrane pressure (TMP) and enzyme pre-treatment on permeation flux and quality of juice were studied. Results. With the total recycle mode, the effect of TMP on the color and clarity of clarified pomegranate juice was significant. The initial color of the raw pomegranate juice was reduced from 74% to 33% and the clarity decreased from 77% to 42% by UF when the TMP increased from (1 to 3.6) bar. Total phenolic rejection decreased from 45% to 21% when the TMP rose from (1 to 2) bar and remained constant above this value. With the batch concentration mode at TMP = 2 bar and velocity 1 m·s–1, the enzymatic treatment (5 U·mL–1, 300 min, T = 20 °C) of pomegranate juice provided the highest permeate flux, a decrease in total phenolics of 50% and an increased clarity of 30%. Fouling of the UF membrane during pomegranate juice processing is mainly due to the retention of polyphenols and/or proteins; thus, several blocking mechanisms were studied, using a recently developed membrane-fouling model. Analysis revealed that the membrane separation process was controlled by the gel layer mechanism of raw pomegranate juice and complete pore blocking mechanism with enzymatic pre-treatment

    Optimization of Bacillus subtilis SPB1 Biosurfactant Production Under Solid-state Fermentation Using By-products of a Traditional Olive Mill Factory

    No full text
    Bacillus subtilis SPB1 is known to produce a highly effective biosurfactant that belongs to the class of lipopeptides. This biosurfactant has shown relevant properties that could be efficiently applied in various domains. However, high production and purification costs limit the use of B. subtilis SPB1 in high-volume applications. The present work aimed to promote an economical production of this lipopeptide biosurfactant. Statistical experimental designs and response surface methodology were employed to optimize the concentrations of agro-industrial residues, inoculum size and humidity for B. subtilis SPB1 biosurfactant production under solid-state fermentation. The best production yield was approximately 30.67 mg of crude lipopeptide biosurfactant per gram of solid material. This yield was obtained using a solid substrate ratio of 1.5, a moisture content of 90% and an inoculum size (OD600 ) of 0.08. These data support the utilization of a mixture of 6 g of olive leaf residue flour and 4 g of olive cake flour with a 10g total weight of the solid substrate. A mixture of two by-products of a traditional olive mill factory was demonstrated to be a suitable substrate for biosurfactant biosynthesis, providing enhanced bacterial growth and leading to a strong improvement in the yield of tensioactive lipopeptide production
    corecore