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The decolorization of direct Solophenyl red 3BL (SR), a polyazo dye extensively used in textile industry was studied. The Fomes
fomentarius laccase alone did not decolorize SR. The natural redox mediator, acetosyringone (AS), was necessary for decolorization
to occur. Box-Behnken design was used to evaluate the effects of three parameters, namely, enzyme concentration (0.5—
2.5UmL™!), redox mediator concentration (3—30 4uM), and incubation time (1-24 h), on the SR decolorization yield. The fitted
mathematical model allowed us to plot response surfaces as well as isoresponse curves and to determine optimal decolorization
conditions. The results clearly indicated that the AS concentration was the main factor influencing the SR decolorization yield. The
selected optimal conditions were enzyme concentration 0.8 UmL™!, mediator concentration 33 uM, and time 14 h 30 min. These
conditions allowed 79.66% of SR decolorization versus 80.70% for the predicted value. These results showed a promising future of
applying laccase-AS system for industrial wastewater bioremediation.

1. Introduction

Waste waters of the textile industries, well implanted in
Tunisia, contain considerable amounts of nonfixed dyes and
especially of azo dyes. The release of those colored waste
waters in the ecosystem is a dramatic source of esthetic
pollution, eutrophication, and perturbations in the aquatic
life [1].

Most physicochemical dye removal methods, which are
generally used for the effluent treatment, have many limi-
tations [2, 3]. Biological decolorization and degradation is
an environmental-friendly and cost-competitive alternative
to the physicochemical decomposition process [4].

The dye biodegradation is carried out mostly by white
rot fungi and by their ligninolytic enzymes such as lignin
peroxidases, manganese peroxidases, and laccases [5, 6].

Laccases are oxidoreductases that belong to the multinuclear
copper-containing oxidases and are able to decolorize and
detoxify industrial dyes [7, 8]. However, some of the dyes
cannot be oxidized, or partly oxidized by laccase because
they are too large to penetrate into the enzyme active site or
have a particularly high redox potential. Laccase mediators,
such as 1-hydroxybenzotriazole (HBT), 2,2-azino-bis 3-
ethylbenzothiaoline-6-sufonic acid (ABTS), and Remazol
Brilliant Blue R (RBBR), are found to extend or permit the
oxidation of nonspecific substrate by laccase [8, 9].
Nevertheless, laccase-mediator system has not yet been
applied at large scale due to the cost of mediators and
their toxicity [10]. In recent years, some natural phenolic
compounds, including syringaldehyde and acetosyringone
(AS), have been described as efficient and ecofriendly laccase
mediators for textile and environmental applications [11].



Previous studies have shown that the efficiency of the dye
decolorization by laccase depends on many factors such as
the reaction time, the concentration of the enzyme and the
structure and the concentration of the dye, and the redox
mediator [12, 13]. Response surface methodology (RSM)
is an efficient experimental strategy to determine optimal
conditions for a multivariable system rather than optimiz-
ing by the conventional method which involves changing
one independent variable while keeping the other factors
constant. These conventional methods are time consuming
and incapable of detecting the true optimum [14-17]. The
RSM has been successfully applied in optimization of the
experimental conditions of the dye decolorization with
fungal laccases [12, 13].

The white-rot fungus Fomes fomentarius has been
recently described as a good producer of laccase in solid-
state cultures [18, 19]. It has also been reported that E
fomentarius laccase efficiently decolorizes the anthraquinone
dye Remazol Brilliant Blue R without mediators [20]. The
present work focused on applying laccase from F. fomentarius
combined with the natural mediator AS, to decolorize C.I.
Direct Solophenyl red 3BL polyazo dye. The main objectives
of this work were to better understand the relationships
between the decolorization variables (enzyme concentration,
redox mediator concentration, and incubation time) and
the response (SR decolorization yield) and to obtain the
optimum experimental conditions for decolorization using a
three-level Box-Behnken design and the RSM. All the results
obtained in this study would provide a sound basis for
further exploration.

2. Experimental Section

2.1. Chemicals. Solophenyl red 3BL (C.I. Direct 80) tetraazo
dye (Figure 1(a)) was obtained from the Ciba-Geigy and
used without further purification. This dye was chosen
as a model compound of polyazo dyes. Acetosyringone
(Figure 1(b)), purchased from Sigma-Aldrich was assayed as
a natural mediator for solophenyl red decolorization. All the
other reagents used were of highest purity grade available
commercially.

2.2. Enzyme Preparation. F. fomentarius laccase was pro-
duced on wheat bran solid medium, and the crude extract
was fractioned by ammonium sulfate precipitation as pre-
viously described [18]. Laccase activity was assayed using
5mM 2, 6-dimethoxyphenol (DMP) in 100mM sodium
tartrate buffer, pH 4.5 (e469 = 27,500 M~ em™!, referred to
DMP concentration). The enzymatic reactions were carried
out at room temperature (22-25°C) and one unit of enzyme
activity was defined as the amount of enzyme oxidizing
1 umol of substrate per minute [21].

2.3. Dye Decolorization Test. The reaction mixture for
SR decolorization experiments contained 100 mM tartrate
buffer (pH 4.5), laccase (0.5-2.5UmL™!), and AS (3-
30uM). SR concentration was selected in order to obtain
1.4 absorbance units at the dye maximum absorbance
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TaBLE 1: Experimental domain of the Box-Behnken design.

Variable Factor Unit  Center  Step of variation
X Enzyme conc.  U/mL 1.5 1.0
X, Mediator conc. M 16.5 13.5
X3 Time h 12.5 11.5

wavelength, 543 nm (0.14 gL 7!, final concentration). All the
reactions were incubated at 30°C in complete darkness and
the residual dye concentration was determined at different
incubation times (1-24h) by monitoring the decrease in
absorbance at 543 nm using a Shimadzu UV-VIS Scanning
spectrophotometer (UV-2101-PC). Dye decolorization was
expressed in terms of percentage. A control test containing
the same amount of a heat-denatured laccase was performed
in parallel, and, in order to find the effect of AS, experiments
were also conducted without addition of AS.

2.4. Experimental Design and Statistical Analysis. In this
work, a Box-Behnken design [15-17, 22-24] was set up to
look for the best experimental conditions of three inde-
pendent factors affecting the efficiency of the decolorization
of SR, namely: enzyme concentration (U;), redox mediator
concentration (U;), and incubation time (Uj3) (Table 1). The
relationship between the response (SR decolorization yield)
and the three quantitative variables was approximated by the
following second-order polynomial function:

1 =Po + 1 X1 + foXa + B3Xs + X + P X5 + B33X5

+ B12XaXs + 13X X3 + B3 X0 X3,

where 7 represents the theoretical response; fo, f3j, Bjk, and
B are model coefficients. X; are coded variables related to
the natural variables U; by the following equation:

_ Uj — Center(j)
Xj = Step of variation(j)’ @

where Center (j) = (Ujnigh — Uj, 10w)/2, Step of variation
(j) = (UjhightUj, 10w)/2 Uj high and Uj jow: two extreme levels
(high and low) given for each natural variable U;.

The coded variables X; are equal to —1 and +1 when
the levels of natural variable U; are Ujiow and Uj pigh,
respectively.

The observed response y; for the ith experiment is

yi=ni+e (e is experimental error). (3)

From the experimental results (y), the estimates
(bo, b1, by, ...) of the model coefficients are calculated and
the model can be written as follows:

j/\ = b() + b1X1 + b2X2 + b3X3 + b]lez + bszzz + b33X32

(4)
+ 012X X0 + b3 X0 X5 + 03X, X3,

where, ¥ is the estimated response function; by, bj, bjk, and
bj; are the estimated model coefficients.
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FiGure 1: Chemical structures of (a) the polyazo dye Solophenyl red 3BL (C.I. Direct 80) and (b) the natural redox mediator acetosyringone.

A three-variable Box-Behnken design with 17 experi-
ments (Table 2) was used to estimate the model coefficients.
The experimental points are located in the middle of a cube
ridges (12 experiments: runs no. 1 to 12) and at the center
of the cube (5 experiments: runs no. 13 to 17). The five
replicates at the center point were carried out in order to
estimate the pure error variance [16, 17, 24].

The significance of the fitted model was tested by the
mean of the analysis of variance (ANOVA) [16, 17, 24]. The
model adequacy was checked, before a predictive use of it in
the studied domain, using four test points (runs n° 18 to 21)
[17].

The fitted model was used to study the relative sensitivity
of the response to the variables in the whole domain and to
look for the optimal experimental conditions. The relation-
ship between the response and the experimental variables
was illustrated graphically by plotting the isoresponse curves
and the response surfaces [25, 26].

In this study, the generation and the data treatment of the
Box-Behnken design were performed using the experimental
design software NemrodW [27].

3. Results and Discussion

3.1. Preliminary Study. Some fungal laccases as well as
laccase mediator systems are efficient in dye decolorization.
Different dyes were decolorized by different laccases at
different rates. The decolorization rate depends on the
structure and the redox potential of the enzyme as well as
the dye structure [28-30]. The polyazo dye SR is widely used
for textile dyeing process which is biodegradation resistant.
Preliminary results showed that F. fomentarius laccase did
not decolorize SR (data not shown), indicating that the
presence of a mediator is required. Similarly, reports from
the literature show that laccase alone does not decolorize
some types of textile dyes [9, 12]. The reason may be that
the redox potential of the dye is higher than that of type
1 Cu of the laccase or the dye could not access the type

1 Cu active site because of its steric hindrance. However,
such dyes can be oxidized by laccase in the presence of some
redox mediators [9-12]. In the present study, the effect of
ABTS, RBBR, and AS on SR decolorization was assessed at
a concentration of 10 yM. Among the three different redox
mediators tested only AS showed the highest decolorization
yield after 1h of incubation (29% for AS versus 21 and 16%
for ABTS and RBBR, resp.). Thus further experiments for
the experimental design were carried out with the natural
mediator acetosyringone.

3.2. Estimated Model. Twenty-one experiments were car-
ried out. The experimental conditions, shown in Table 2,
were arranged according to the three-variable Box-Behnken
design. The corresponding observed values of the decol-
orization yield are indicated in the last column of Table 2.
The observed responses were used to compute the model
coefficients using the least square method. This allowed us
to write the following estimated model:

y = 55.748 — 2.836X + 23.300X>

+ 7.584X; — 2.283X}? — 6.690X7?
(5)
—9.853X7 — 4.520X, X, — 2.582X,X;3

+ 1.155X, X5.

3.3. Statistical Analysis and Validation of the Model. The
analysis of variance for the fitted model (Table 3) showed that
the regression sum of squares was statistically significant at
the level 99.9% and the lack of fit was not significant. Thus,
we concluded that the model represented well the measured
data.

In addition, numerical results for check points (Table 4)
showed that the measured values were very close to those
calculated using the model equation. Indeed, the differences
between calculated and measured responses were not statis-
tically significant when using the t-test at a 95% probability



TaBLE 2: Experimental conditions of the Box-Behnken design in coded and natural variables and the corresponding experimental and

theoretical responses.
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Run N° X, X, X; Enzyme Mediator Time  Measured decolorization  Estimated decolorization
(U/mL) (uM) (h) (%) (%)

1 —-1.00 —-1.00 0.00 0.5 3.0 12.5 18.36 21.79

2 1.00 —1.00 0.00 2.5 3.0 12.5 26.42 25.16

3 —1.00 1.00 0.00 0.5 30.0 12.5 76.17 77.43

4 1.00 1.00 0.00 2.5 30.0 12.5 66.15 62.72

5 —1.00 0.00 —1.00 0.5 16.5 1.0 36.72 36.28

6 1.00 0.00 —1.00 2.5 16.5 1.0 31.52 35.78

7 —1.00 0.00 1.00 0.5 16.5 24.0 60.87 56.62

8 1.00 0.00 1.00 2.5 16.5 24.0 45.34 45.78

9 0.00 —-1.00 —-1.00 1.5 3.0 1.0 12.47 9.48

10 0.00 1.00 —1.00 1.5 30.0 1.0 54.59 53.77

11 0.00 —1.00 1.00 1.5 3.0 24.0 21.51 22.33

12 0.00 1.00 1.00 1.5 30.0 24.0 68.25 71.24

13 0.00 0.00 0.00 1.5 16.5 12.5 60.44 55.75
Center 14 0.00 0.00 0.00 1.5 16.5 12.5 55.71 55.75
points 15 0.00 0.00 0.00 1.5 16.5 12.5 51.59 55.75

16 0.00 0.00 0.00 1.5 16.5 12.5 53.68 55.75

17 0.00 0.00 0.00 1.5 16.5 12.5 57.32 55.75

18 -0.40 —-0.25 -0.17 1.1 13.1 10.5 51.59 48.12
Check 19 0.40 -0.25 -0.17 1.9 13.1 10.5 49.82 47.12
points 20 0.00 0.45 -0.17 1.5 22.6 10.5 65.24 63.22

21 0.00 0.00 -0.17 1.5 16.5 10.5 51.65 54.17

TaBLE 3: Analysis of variance.

Source of variation Sum of squares Degrees of freedom Mean square Ratio Significance
Regression 5652,89 9 628,099 34.1739 A
Residuals 128,657 7 18,3795
Validity 82,6035 3 27,5345 2.3915 N.S.
Error 46,0531 4 11,5132
Total 5781,55 16

*** Significant at the level 99.9% N.S.: nonsignificant.

level, as shown in Table 4. Therefore, the estimated model
coefficients could be recalculated with all the 21 experiment
results. The corresponding second-order model is repre-
sented by the following equation:

¥y = 56.305 — 2.872X; +23.227X>

+ 7.508X; — 2.454X} — 6.908X7
(6)
- 10.203X% — 4.502X, X, — 2.570X,X;

+ 1.180X,X5.

3.4. Interpretation of the Response Surface Model. The
relationship between the response and the experimental
variables can be illustrated graphically by plotting three-
dimensional response surface plots and the two-dimensional
isoresponse curves (Figures 2 to 4). In these plots, the factor

not represented by the two axes was fixed at its 0 coded level.
Such plots are helpful in studying the effects of the variation
of the factors in the domain studied and consequently, in
determining the optimal experimental conditions [25, 26].
Figure 2 shows the effect of enzyme concentration (X;)
and mediator concentration (X;) on SR decolorization
yield at 12h 30 minutes (X3 = 0). It clearly shows
that the decolorization yield increases with the mediator
concentration. However, in the presence of a large amount
of mediator (>16.5 yuM), the enzyme concentration exhibits
a negative effect on the decolorization yield. At 12h 30
minutes, the decolorization yield can reach 70 to 80% (blue
coloured area) when we use a mediator concentration in the
range of 20-30 yuM and enzyme concentration lower than
2U/mL. Wong and Yu [31] also reported that the efficiency
of laccase-mediator systems in the decolorization reaction
depended principally on the mediator concentrations and
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TasLE 4: Validation of the model with the check points.

Run N° Vi Vi d=(yi— ) t exp. Significance
18 51.590 48.122 3.468 0.741 N.S.
19 49.820 47.108 2.712 0.579 N.S.
20 65.240 63.216 2.024 0.432 N.S.
21 51.650 54.174 —2.524 -0.538 N.S.

yi: measured response value; y;: estimated response value; d: difference between measured and estimated response values; ¢ exp.: student experimental value;
N.S.: non significant.
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FiGuRre 2: Three-dimensional response surface and contour plots for the effect of enzyme and redox mediator concentrations at constant
incubation time (12.5 h) on the decolorization of SR.
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FiGUure 3: Three-dimensional response surface and contour plots for the effect of redox mediator concentration and incubation time at
constant enzyme concentration (1.5 U/mL) on the decolorization of SR.
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FIGURE 4: Three-dimensional response surface and contour plots for the effect of enzyme concentration and incubation time at constant

redox mediator concentration (16.5 yM) on the decolorization of SR.
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FiGURre 5: Three-dimensional response surface and contour plots for the effect of enzyme and redox mediator concentrations at constant

incubation time (14.5 h) on the decolorization of SR.

laccase activity used. The feasibility of the laccase-mediator
systems in biotransformation reactions depends on redox
reversibility of the radical-substrate reaction, as well as on the
balance between the stability and reactivity of the mediator
radical which, in addition, should not inhibit enzyme activity
[32].

The positive effect of mediator concentration was also
demonstrated in Figure 3. When the enzyme concentration
was fixed at 1.5U/mL (X; = 0), the increase of mediator
concentration and incubation time improved the SR decol-
orization yield. Experimentations conducted with a mediator
concentration more than 20 uM and incubation time in the
range of 10-25h led to relatively high decolorization yields
(70-77%) as shown in Figure 3 (blue coloured area).

Figure 4 represents the effect of enzyme concentration
(X1) and incubation time (X3) on SR decolorization at
constant redox mediator concentration (16.5 yuM). The con-
tour plots of Figure 4 also support the important role of
incubation time. Indeed, the decolorization yield increases
from 28 to 58% when the incubation time increases from
1h to 13h 30 minutes. High decolorization yields 58-60%
(blue coloured area) can be reached when using a relatively
low enzyme concentration (<1.5U/mL) and an incubation
time in the range of 13 h 30 minutes—22 h.

The results presented above showed that the concentra-
tion of the AS phenolic mediator was the more relevant
factor for the SR decolorization. According to the relevant
literature, the action mechanism of phenolic mediators
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should be similar to that of -N (OH)- type mediators (like
HBT) [33]. After its oxidation by laccase to cation radical,
the small AS molecule, can transfer electrons between the
enzyme and the dye as a redox mediator and thus oxidizes
the nonsubstrate dye. The fact that F. fomentarius laccase is
able to decolorize the SR polyazo dye with AS as a mediator
makes it very interesting, since this phenolic mediator can be
easily obtained from natural substrates by organic extraction
or alkaline treatment. Also, the use of this natural mediator
may be a solution to the toxicity problem of the synthetic
mediators currently used for the textile effluent treatment
(8, 32].

3.5. Optimization. The selection of optimal conditions was
based on the determination of the experimental conditions
leading simultaneously to the maximization of the SR
decolorization and the minimization of the process cost.

As the SR decolorization yield can be maximized when
using an incubation time in the range of 10 h—-25 h (Figure 3)
and 13 h 30 minutes—22 h (Figure 4), we fixed the incubation
time at a relatively low level (14 h 30 minutes) in order to
lower the process cost, and we ploted enzyme versus redox
mediator concentration (Figure 5) to look for the highest
decolorization yield.

Figure 5 shows that the optimal conditions are enzyme
concentration 0.8 UmL™!, mediator concentration 33 uM,
and reaction time 14 h 30 minutes. Under these conditions,
the expected value of the SR decolorization yield was yop =
80.70% =+ 0.75. A supplementary experiment was carried
out under the selected optimal conditions. It led to an
experimental SR decolorization yield equal to 79.66%, which
was in close agreement with the predicted value. A similar
decolorization yield (81.12 %) was obtained when using the
purified laccase from F. fomentarius [20] under the optimal
conditions.

4. Conclusion

This work revealed that the response surface methodology
was a useful tool to determine the optimal experimental
conditions for the decolorization of the commercially avail-
able textile polyazo dye, solophenyl red (SR). The presence
of a natural mediator, acetosyringone (AS), was essential
for the decolorization of RB-5 by F. fomentarius laccase.
The concentration of the AS proved to be the principal
factor that affected the yield of the dye decolorization.
The selected optimal conditions (enzyme concentration
0.8 UmL™!, mediator concentration 33 ¢M, and time 14 h
30 minutes) were checked and confirmed by supplementary
experiments using partially and purified E fomentarius
laccases. The experimental response value obtained with
partially purified laccase (79.66%) was found to be in
good agreement with the predicted one (80.70%). Similar
decolorization yield (81.12%) was obtained when using
the purified laccase from E. fomentarius under the optimal
conditions.

From a standpoint of a real case application, the results
showed that laccase-AS system proved to be efficient for

solutions of dyes currently used in textile industries. Further
pilot scale studies are required with this biocatalytic process
for actual industrial applications, and detailed study is
needed to explore the mechanism involved.
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