31,560 research outputs found

    Flipped Cryptons and the UHECRs

    Get PDF
    Cryptons are metastable bound states of fractionally-charged particles that arise generically in the hidden sectors of models derived from heterotic string. We study their properties and decay modes in a specific flipped SU(5) model with long-lived four-particle spin-zero bound states called {\it tetrons}. We show that the neutral tetrons are metastable, and exhibit the tenth-order non-renormalizable superpotential operators responsible for their dominant decays. By analogy with QCD, we expect charged tetrons to be somewhat heavier, and to decay relatively rapidly via lower-order interactions that we also exhibit. The expected masses and lifetimes of the neutral tetrons make them good candidates for cold dark matter (CDM), and a potential source of the ultra-high energy cosmic rays (UHECRs) which have been observed, whereas the charged tetrons would have decayed in the early Universe.Comment: 8 Pages RevTex. New version with expanded introduction to flipped SU(5). Accepted for publication in PR

    Intrinsic Polarized Strangeness and Lambda Polarization in Deep-Inelastic Production

    Full text link
    We propose a model for the longitudinal polarization of Lambda baryons produced in deep-inelastic lepton scattering at any xF, based on static SU(6) quark-diquark wave functions and polarized intrinsic strangeness in the nucleon associated with individual valence quarks. Free parameters of the model are fixed by fitting NOMAD data on the longitudinal polarization of Lambda hyperons in neutrino collisions. Our model correctly reproduces the observed dependences of Lambda polarization on the kinematic variables. Within the context of our model, the NOMAD data imply that the intrinsic strangeness associated with a valence quark has anticorrelated polarization. We also compare our model predictions with results from the HERMES and E665 experiments using charged leptons. Predictions of our model for the COMPASS experiment are also presented

    Photoproduction of ρ0\rho^0 mesons in ultraperipheral heavy ion collisions at energies available at the BNL Relativistic Heavy Ion Collider (RHIC) and CERN Large Hadron Collider (LHC)

    Full text link
    We investigate the photoproduction of ρ\rho mesons in ultraperipheral heavy ion collisions at RHIC and LHC energies in the dipole approach and within two phenomenological models based on the the Color Glass Condensate (CGC) formalism. We estimate the integrated cross section and rapidity distribution for meson production and compare our predictions with the data from the STAR collaboration. In particular, we demonstrate that the total cross section at RHIC is strongly dependent on the energy behavior of the dipole-target cross section at low energies, which is not well determined in the dipole approach. In contrast, the predictions at midrapidities at RHIC and in the full rapidity at LHC are under theoretical control and can be used to test the QCD dynamics at high energies.Comment: 6 pages, 5 figures, 1 table. Improved version to be published in Physical Review

    Baryon Exotics in the Quark Model, the Skyrme Model and QCD

    Full text link
    We identify the quantum numbers of baryon exotics in the Quark Model, the Skyrme Model and QCD, and show that they agree for arbitrary colors and flavors. We define exoticness, E, which can be used to classify the states. The exotic baryons include the recently discovered qqqq qbar pentaquarks (E=1), as well as exotic baryons with additional q qbar pairs (E >=1). The mass formula for non-exotic and exotic baryons is given as an expansion in 1/N, and allows one to relate the moment of inertia of the Skyrme soliton to the mass of a constituent quark

    Testing Quantum Mechanics in the Neutral Kaon System

    Get PDF
    The neutral kaon system is a sensitive probe of quantum mechanics. We revive a parametrization of non-quantum-mechanical effects that is motivated by considerations of the nature of space-time foam, and show how it can be constrained by new measurements of KL2πK_L \rightarrow 2\pi and KL,SK_{L,S} semileptonic decays at LEAR or a ϕ\phi factory.Comment: 10 page

    Is Nothing Sacred? Vacuum Energy, Supersymmetry and Lorentz Breaking from Recoiling D branes

    Get PDF
    Classical superstring vacua have zero vacuum energy and are supersymmetric and Lorentz-invariant. We argue that all these properties may be destroyed when quantum aspects of the interactions between particles and non-perturbative vacuum fluctuations are considered. A toy calculation of string/D-brane interactions using a world-sheet approach indicates that quantum recoil effects - reflecting the gravitational back-reaction on space-time foam due to the propagation of energetic particles - induce non-zero vacuum energy that is linked to supersymmetry breaking and breaks Lorentz invariance. This model of space-time foam also suggests the appearance of microscopic event horizons.Comment: 28 pages LaTeX, 5 eps figures, talk presented by DVN at 4th International Symposium On Sources And Detection Of Dark Matter In The Universe (DM 2000), Marina del Rey, California, 20-23 Feb 200

    Liouville Cosmology

    Full text link
    Liouville string theory is a natural framework for discussing the non-equilibrium evolution of the Universe. It enables non-critical strings to be treated in mathematically consistent manner, in which target time is identified with a world-sheet renormalization-group scale parameter, preserving target-space general coordinate invariance and the existence of an S-matrix. We review our proposals for a unified treatment of inflation and the current acceleration of the Universe. We link the current acceleration of the Universe with the value of the string coupling. In such a scenario, the dilaton plays an essential background role, driving the acceleration of the Universe during the present era after decoupling as a constant during inflation.Comment: 23 pages latex, 2 eps figures, contribution to the proceedings of the Dark 2004 conference, College Station, October 200

    M-Theory Model-Building and Proton Stability

    Get PDF
    We study the problem of baryon stability in M theory, starting from realistic four-dimensional string models constructed using the free-fermion formulation of the weakly-coupled heterotic string. Suitable variants of these models manifest an enhanced custodial gauge symmetry that forbids to all orders the appearance of dangerous dimension-five baryon-decay operators. We exhibit the underlying geometric (bosonic) interpretation of these models, which have a Z2×Z2Z_2 \times Z_2 orbifold structure similar, but not identical, to the class of Calabi-Yau threefold compactifications of M and F theory investigated by Voisin and Borcea. A related generalization of their work may provide a solution to the problem of proton stability in M theory.Comment: 14 pages. Standard Late

    The String Universe: High TcT_c Superconductor or Quantum Hall Conductor?

    Get PDF
    Our answer is the latter. Space-time singularities, including the initial one, are described by world-sheet topological Abelian gauge theories with a Chern-Simons term. Their effective N=2N=2 supersymmetry provides an initial fixed point where the Bogomolny bound is saturated on the world-sheet, corresponding to an extreme Reissner-Nordstrom solution in space-time. Away from the singularity the gauge theory has world-sheet matter fields, bosons and fermions, associated with the generation of target space-time. Because the fermions are complex (cf the Quantum Hall Effect) rather than real (cf high-TcT_c superconductors) the energetically-preferred vacuum is not parity or time-reversal invariant, and the associated renormalization group flow explains the cosmological arrow of time, as well as the decay of real or virtual black holes, with a monotonic increase in entropy.Comment: 19 page

    Exclusive electroproduction revisited: treating kinematical effects

    Full text link
    Generalized parton distributions of the nucleon are accessed via exclusive leptoproduction of the real photon. While earlier analytical considerations of phenomenological observables were restricted to twist-three accuracy, i.e., taking into account only terms suppressed by a single power of the hard scale, in the present study we revisit this differential cross section within the helicity formalism and restore power-suppressed effects stemming from the process kinematics exactly. We restrict ourselves to the phenomenologically important case of lepton scattering off a longitudinally polarized nucleon, where the photon flips its helicity at most by one unit.Comment: 22 pages, 1 figur
    corecore