966 research outputs found
Moderate deviations for random field Curie-Weiss models
The random field Curie-Weiss model is derived from the classical Curie-Weiss
model by replacing the deterministic global magnetic field by random local
magnetic fields. This opens up a new and interestingly rich phase structure. In
this setting, we derive moderate deviations principles for the random total
magnetization , which is the partial sum of (dependent) spins. A typical
result is that under appropriate assumptions on the distribution of the local
external fields there exist a real number , a positive real number
, and a positive integer such that satisfies
a moderate deviations principle with speed and rate
function , where .Comment: 21 page
Ensemble decision tree models using RUSBoost for estimating risk of iron failure in drinking water distribution systems
Safe, trusted drinking water is fundamental to society. Discolouration is a key aesthetic indicator visible to customers. Investigations to understand discolouration and iron failures in water supply systems require assessment of large quantities of disparate, inconsistent, multidimensional data from multiple corporate systems. A comprehensive data matrix was assembled for a seven year period across the whole of a UK water company (serving three million people). From this a novel data driven tool for assessment of iron risk was developed based on a yearly update and ranking procedure, for a subset of the best quality data. To avoid a ‘black box’ output, and provide an element of explanatory (human readable) interpretation, classification decision trees were utilised. Due to the very limited number of iron failures, results from many weak learners were melded into one high-quality ensemble predictor using the RUSBoost algorithm which is designed for class imbalance. Results, exploring simplicity vs predictive power, indicate enough discrimination between variable relationships in the matrix to produce ensemble decision tree classification models with good accuracy for iron failure estimation at District Management Area (DMA) scale. Two model variants were explored: ‘Nowcast’ (situation at end of calendar year) and ‘Futurecast’ (predict end of next year situation from this year’s data). The Nowcast 2014 model achieved 100% True Positive Rate (TPR) and 95.3% True Negative Rate (TNR), with 3.3% of DMAs classified High Risk for un-sampled instances. The Futurecast 2014 achieved 60.5% TPR and 75.9% TNR, with 25.7% of DMAs classified High Risk for un-sampled instances. The output can be used to focus preventive measures to improve iron compliance
Ensemble decision tree models using RUSBoost for estimating risk of iron failure in drinking water distribution systems
Safe, trusted drinking water is fundamental to society. Discolouration is a key aesthetic indicator visible to customers. Investigations to understand discolouration and iron failures in water supply systems require assessment of large quantities of disparate, inconsistent, multidimensional data from multiple corporate systems. A comprehensive data matrix was assembled for a seven year period across the whole of a UK water company (serving three million people). From this a novel data driven tool for assessment of iron risk was developed based on a yearly update and ranking procedure, for a subset of the best quality data. To avoid a ‘black box’ output, and provide an element of explanatory (human readable) interpretation, classification decision trees were utilised. Due to the very limited number of iron failures, results from many weak learners were melded into one high-quality ensemble predictor using the RUSBoost algorithm which is designed for class imbalance. Results, exploring simplicity vs predictive power, indicate enough discrimination between variable relationships in the matrix to produce ensemble decision tree classification models with good accuracy for iron failure estimation at District Management Area (DMA) scale. Two model variants were explored: ‘Nowcast’ (situation at end of calendar year) and ‘Futurecast’ (predict end of next year situation from this year’s data). The Nowcast 2014 model achieved 100% True Positive Rate (TPR) and 95.3% True Negative Rate (TNR), with 3.3% of DMAs classified High Risk for un-sampled instances. The Futurecast 2014 achieved 60.5% TPR and 75.9% TNR, with 25.7% of DMAs classified High Risk for un-sampled instances. The output can be used to focus preventive measures to improve iron compliance
Can a pseudo-symmetry solve the cosmological constant problem?
A general no-go theorem dampens hope that the cosmological constant problem
can be solved by a local symmetry mechanism. The possibility is considered here
that this no-go theorem can be avoided by a pseudo-symmetry. A simple
macroscopic effective field theory is constructed which admits an enhanced
pseudo-symmetry in the absence of a cosmological term. It is pointed out that
this pseudo-symmetry is an exact classical invariance of superstrings. The
conjecture that this pseudo-symmetry survives in the quantum theory has several
interesting consequences.Comment: Changes in language (including new title), and assorted perestroika.
One new consequence of conjecture. 10 pages, uuencoded Postscript file. To
appear in Phys.Lett.
Strange quarks and lattice QCD
The last few years have seen a dramatic improvement in our knowledge of the
strange form factors of the nucleon. With regard to the vector from factors the
level of agreement between theory and experiment gives us considerable
confidence in our ability to calculate with non-perturbative QCD. The
calculation of the strange scalar form factor has moved significantly in the
last two years, with the application of new techniques which yield values
considerably smaller than believed for the past 20 years. These new values turn
out to have important consequences for the detection of neutralinos, a
favourite dark matter candidate. Finally, very recent lattice studies have
resurrected interest in the famed H-dibaryon, with modern chiral extrapolation
of lattice data suggesting that it may be only slightly unbound. We review some
of the major sources of uncertainty in that chiral extrapolation.Comment: Invited talk at the Asia-Pacific few Body Conference, Seoul Kore
Baryogenesis and Gravitino Dark Matter in Gauge-Mediated Supersymmetry-Breaking Models
We discuss two cosmological issues in a generic gauge-mediated supersymmetry
(SUSY)-breaking model, namely the Universe's baryon asymmetry and the gravitino
dark-matter density. We show that both problems can be simultaneously solved if
there exist extra matter multiplets of a SUSY-invariant mass of the order of
the ``-term'', as suggested in several realistic SUSY grand-unified
theories. We propose an attractive scenario in which the observed baryon
asymmetry is produced in a way totally independent of the reheating temperature
of inflation without causing any cosmological gravitino problem. Furthermore,
in a relatively wide parameter space, we can also explain the present mass
density of cold dark matter by the thermal relics of the gravitinos without an
adjustment of the reheating temperature of inflation. We point out that there
is an interesting relation between the baryon asymmetry and the dark-matter
density.Comment: 20 pages, 2 figure
Lorentz breaking Effective Field Theory and observational tests
Analogue models of gravity have provided an experimentally realizable test
field for our ideas on quantum field theory in curved spacetimes but they have
also inspired the investigation of possible departures from exact Lorentz
invariance at microscopic scales. In this role they have joined, and sometime
anticipated, several quantum gravity models characterized by Lorentz breaking
phenomenology. A crucial difference between these speculations and other ones
associated to quantum gravity scenarios, is the possibility to carry out
observational and experimental tests which have nowadays led to a broad range
of constraints on departures from Lorentz invariance. We shall review here the
effective field theory approach to Lorentz breaking in the matter sector,
present the constraints provided by the available observations and finally
discuss the implications of the persisting uncertainty on the composition of
the ultra high energy cosmic rays for the constraints on the higher order,
analogue gravity inspired, Lorentz violations.Comment: 47 pages, 4 figures. Lecture Notes for the IX SIGRAV School on
"Analogue Gravity", Como (Italy), May 2011. V.3. Typo corrected, references
adde
Conditions for spontaneous homogenization of the Universe
The present-day Universe appears to be homogeneous on very large scales. Yet
when the casual structure of the early Universe is considered, it becomes
apparent that the early Universe must have been highly inhomogeneous. The
current paradigm attempts to answer this problem by postulating the inflation
mechanism However, inflation in order to start requires a homogeneous patch of
at least the horizon size. This paper examines if dynamical processes of the
early Universe could lead to homogenization. In the past similar studies seem
to imply that the set of initial conditions that leads to homogenization is of
measure zero. This essay proves contrary: a set of initial conditions for
spontaneous homogenization of cosmological models can form a set of non-zero
measure.Comment: 7 pages. Fifth Award in the 2010 Gravity Research Foundation essay
competitio
Pion Content of the Nucleon as seen in the NA51 Drell-Yan experiment
In a recent CERN Drell-Yan experiment the NA51 group found a strong asymmetry
of and densities in the proton at . We interpret
this result as a decisive confirmation of the pion-induced sea in the nucleon.Comment: 10 pages + 3 figures, Preprint KFA-IKP(TH)-1994-14 .tex file. After
\enddocument a uu-encodeded Postscript file comprising the figures is
appende
Non-thermal dark matter via Affleck-Dine baryogenesis and its detection possibility
The formation and late time decays of Q-balls are generic consequences of the
Affleck-Dine (AD) baryogenesis. A substantial amount of the lightest
supersymmetry (SUSY) particles (LSPs) are produced non-thermally as the decay
products of these Q-balls. This requires a significantly large annihilation
cross section of the LSP so as not to overclose the universe, which predicts a
higgsino- or wino-like LSP instead of the standard bino LSP. We have reexamined
the AD baryogenesis with special attention to the late-time decays of the
Q-balls, and then specified the parameter regions where the LSPs produced by
the Q-ball decays result in a cosmologically interesting mass density of dark
matter by adopting several SUSY breaking models. This reveals new
cosmologically interesting parameter regions, which have not attracted much
attention so far. We have also investigated the prospects of direct and
indirect detection of these dark matter candidates, and found that there is an
intriguing possibility to detect them in various next generation dark matter
searches.Comment: 51 pages, 18 figures, version accepted for publication in Physical
Review
- …
