5,946 research outputs found

    Automated Transit Networks (ATN): A Review of the State of the Industry and Prospects for the Future, MTI Report 12-31

    Get PDF
    The concept of Automated Transit Networks (ATN) - in which fully automated vehicles on exclusive, grade-separated guideways provide on-demand, primarily non-stop, origin-to-destination service over an area network – has been around since the 1950s. However, only a few systems are in current operation around the world. ATN does not appear “on the radar” of urban planners, transit professionals, or policy makers when it comes to designing solutions for current transit problems in urban areas. This study explains ATN technology, setting it in the larger context of Automated Guideway Transit (AGT); looks at the current status of ATN suppliers, the status of the ATN industry, and the prospects of a U.S.-based ATN industry; summarizes and organizes proceedings from the seven Podcar City conferences that have been held since 2006; documents the U.S./Sweden Memorandum of Understanding on Sustainable Transport; discusses how ATN could expand the coverage of existing transit systems; explains the opportunities and challenges in planning and funding ATN systems and approaches for procuring ATN systems; and concludes with a summary of the existing challenges and opportunities for ATN technology. The study is intended to be an informative tool for planners, urban designers, and those involved in public policy, especially for urban transit, to provide a reference for history and background on ATN, and to use for policy development and research

    Analysis of phase transitions in the mean-field Blume-Emery-Griffiths model

    Get PDF
    In this paper we give a complete analysis of the phase transitions in the mean-field Blume-Emery-Griffiths lattice-spin model with respect to the canonical ensemble, showing both a second-order, continuous phase transition and a first-order, discontinuous phase transition for appropriate values of the thermodynamic parameters that define the model. These phase transitions are analyzed both in terms of the empirical measure and the spin per site by studying bifurcation phenomena of the corresponding sets of canonical equilibrium macrostates, which are defined via large deviation principles. Analogous phase transitions with respect to the microcanonical ensemble are also studied via a combination of rigorous analysis and numerical calculations. Finally, probabilistic limit theorems for appropriately scaled values of the total spin are proved with respect to the canonical ensemble. These limit theorems include both central-limit-type theorems, when the thermodynamic parameters are not equal to critical values, and noncentral-limit-type theorems, when these parameters equal critical values.Comment: Published at http://dx.doi.org/10.1214/105051605000000421 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    RG/Pade Estimate of the Three-Loop Contribution to the QCD Static Potential Function

    Get PDF
    The three renormalization-group-accessible three-loop coefficients of powers of logarithms within the \bar{MS} series momentum-space for the QCD static potential are calculated and compared to values obtained via asymptotic Pad\'e-approximant methods. The leading and next-to-leading logarithmic coefficients are both found to be in exact agreement with their asymptotic Pad\'e-predictions. The predicted value for the third RG-accessible coefficient is found to be within 7% relative |error| of its true value for n_f leq 6, and is shown to be in exact agreement with its true value in the n_f \to \infty limit. Asymptotic Pad\'e estimates are also obtained for the remaining (RG-inaccessible) three-loop coefficient. Comparison is also made with recent estimates of the three-loop contribution to the configuration-space static-potential function.Comment: 13 pages, LaTeX, additional discussion on the result

    Asymptotic behavior of the finite-size magnetization as a function of the speed of approach to criticality

    Full text link
    The main focus of this paper is to determine whether the thermodynamic magnetization is a physically relevant estimator of the finite-size magnetization. This is done by comparing the asymptotic behaviors of these two quantities along parameter sequences converging to either a second-order point or the tricritical point in the mean-field Blume--Capel model. We show that the thermodynamic magnetization and the finite-size magnetization are asymptotic when the parameter α\alpha governing the speed at which the sequence approaches criticality is below a certain threshold α0\alpha_0. However, when α\alpha exceeds α0\alpha_0, the thermodynamic magnetization converges to 0 much faster than the finite-size magnetization. The asymptotic behavior of the finite-size magnetization is proved via a moderate deviation principle when 0α00\alpha_0. To the best of our knowledge, our results are the first rigorous confirmation of the statistical mechanical theory of finite-size scaling for a mean-field model.Comment: Published in at http://dx.doi.org/10.1214/10-AAP679 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Ginzburg-Landau Polynomials and the Asymptotic Behavior of the Magnetization Near Critical and Tricritical Points

    Get PDF
    For the mean-field version of an important lattice-spin model due to Blume and Capel, we prove unexpected connections among the asymptotic behavior of the magnetization, the structure of the phase transitions, and a class of polynomials that we call the Ginzburg-Landau polynomials. The model depends on the parameters n, beta, and K, which represent, respectively, the number of spins, the inverse temperature, and the interaction strength. Our main focus is on the asymptotic behavior of the magnetization m(beta_n,K_n) for appropriate sequences (beta_n,K_n) that converge to a second-order point or to the tricritical point of the model and that lie inside various subsets of the phase-coexistence region. The main result states that as (beta_n,K_n) converges to one of these points (beta,K), m(beta_n,K_n) ~ c |beta - beta_n|^gamma --> 0. In this formula gamma is a positive constant, and c is the unique positive, global minimum point of a certain polynomial g that we call the Ginzburg-Landau polynomial. This polynomial arises as a limit of appropriately scaled free-energy functionals, the global minimum points of which define the phase-transition structure of the model. For each sequence (beta_n,K_n) under study, the structure of the global minimum points of the associated Ginzburg-Landau polynomial mirrors the structure of the global minimum points of the free-energy functional in the region through which (beta_n,K_n) passes and thus reflects the phase-transition structure of the model in that region. The properties of the Ginzburg-Landau polynomials make rigorous the predictions of the Ginzburg-Landau phenomenology of critical phenomena, and the asymptotic formula for m(beta_n,K_n) makes rigorous the heuristic scaling theory of the tricritical point.Comment: 70 pages, 8 figure
    • …
    corecore