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Analysis of Phase Transitions in the Mean-Field Blume-Emey-Griffiths Model

R.S. Ellisl:* P. Otto?'T and H. Touchette?

Department of Mathematics and Statistics, University obséahusetts, Amherst, MA. USA 01003
2Department of Mathematics, Gettysburg College, GettyghipA, USA 17325
3School of Mathematical Sciences, Queen Mary, Universityoofion, London, UK E1 4NS

In this paper we give a complete analysis of the phase transiin the mean-field Blume-Emery-
Griffiths lattice-spin model with respect to the canonicasemble, showing both a second-order,
continuous phase transition and a first-order, discontisyghase transition for appropriate values
of the thermodynamic parameters that define the model. Tptesse transitions are analyzed both
in terms of the empirical measure and the spin per site byystgdifurcation phenomena of the
corresponding sets of canonical equilibrium macrostatbgh are defined via large deviation prin-
ciples. Analogous phase transitions with respect to theacoamonical ensemble are also studied via
a combination of rigorous analysis and numerical calcoeti Finally, probabilistic limit theorems
for appropriately scaled values of the total spin are pravgd respect to the canonical ensemble.
These limit theorems include both central-limit-type tresos when the thermodynamic parameters
are not equal to critical values and non-central-limiteytheorems when these parameters equal
critical values.

Keywords: Equilibrium macrostates, second-order phasssition, first-order phase transition, large deviation
principle

I. INTRODUCTION

The Blume-Emery-Griffiths (BEG) model [3] is an importarttiee-spin model in statistical mechanics.
It is one of the few and certainly one of the simplest modelswmto exhibit, in the mean-field approxi-
mation, both a continuous, second-order phase transitidraaliscontinuous, first-order phase transition.
Because of this property, the model has been studied exédnsis a model of many diverse systems in-
cluding He-He! mixtures — the system for which Blume, Emery, and Griffithstfulevised their model
[3] — as well as solid-liquid-gas systems [15, 21, 22], m@&rwlsions [20], semiconductor alloys [16], and
electronic conduction models [14]. On a more theoreticatllehe BEG model has also played an impor-
tant role in the development of the renormalization-grduwgoty of phase transitions of the Potts model; see
[13, 17] for details and references.

As a long-range model with a simple description but a retdificomplicated phase transition structure,
the BEG model continues to be of interest in modern statistieechanical studies. Our motivation for
revisiting this model was initiated by a recent observatiofi, 2] that the mean-field version of the BEG
model has nonequivalent microcanonical and canonicahelnlss, in the sense that it exhibits microcanon-
ical equilibrium properties having no equivalent withiretbanonical ensemble. This observation has been
verified in [12] by numerical calculations both at the thedywwamic level, as in [1, 2], and at the level of
equilibrium macrostates. In response to these earlier syankthis paper we address the phase transition
behavior of the model by giving separate analyses of thetsirel of the sets of equilibrium macrostates
for each of the two ensembles. Not only are our results cmisvith the findings in [1, 2, 12], but also
we rigorously prove for the first time a number of results tighificantly generalize those found in these
papers, where they were derived nonrigorously. For therdaabensemble, full proofs of the structure of
the set of equilibrium macrostates are provided. For theonanonical ensemble, full proofs could not be
attained. However, using numerical methods and followin@gaalogous technique used in the canonical
case, we also analyze the structure of the set of microcealosguilibrium macrostates.

The BEG model is a spin-1 model defined on the{de®, ...,n}. The spin at sitg € {1,2,....,n} is
denoted byw;, a quantity taking values in = {—1,0, 1}. The Hamiltonian for the BEG model is defined
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whereK > 0 is given andv = (wy, ...,w,) € A™. The energy per particle is defined by

n 2 n ) 2
han(u)) = % n,K(w) — M - K <M> ) (1.1)

n n

In order to analyze the phase transition behavior of the madgefirst introduce the sets of equilibrium
macrostates for the canonical ensemble and the microcaaia@msemble. As we will see, the canonical
equilibrium macrostates solve a two-dimensional, ungaited minimization problem while the micro-
canonical equilibrium macrostates solve a dual, one-daioeal, constrained minimization problem. The
definitions of these sets follow from large deviation prpies derived for general models in [7]. In the par-
ticular case of the BEG model they are consequences of théhisiche BEG-Hamiltonian can be written
as a function of the empirical measures of the spin randomhlas and that according to Sanov’s Theorem
the large deviation behavior of these empirical measurgevsrned by the relative entropy.

We use two innovations to analyze the structure of the seabmical equilibrium macrostates. The
firstis to reduce to a one-dimensional problem the two-dsrmeral minimization problem that characterizes
these macrostates. This is carried out by absorbing thentevacting component of the energy per particle
function into the prior measure, which is a product measureanfiguration space. This manipulation
allows us to express the canonical ensemble in terms of tipgrieal means, or spin per site, of the spin
random variables. Doing so reduces the analysis of BEG modleé analysis of a Curie-Weiss-type model
[6] with single-site measures depending@n

The analysis of the set of canonical equilibrium macrosteéurther simplified by a second innovation.
Because the thermodynamic parameter that defines the cahensemble is the inverse temperattre
phase transition with respect to this ensemble is definedkingfihe Hamiltonian-parameté¢ and varying
6. Our analysis of the set of canonical equilibrium macrestés based on a much more efficient approach
that fixes and variesk'. Proceeding in this way allows us to solve rigorously andamplete detail the
reduced one-dimensional problem characterizing the ieguin macrostates. We then extrapolate these
results obtained by fixing and varyingK to physically relevant results that hold for fixéfand varyings.
These include a second-order, continuous phase tranaitiora first-order, discontinuous phase transition
for different ranges ofs.

For the microcanonical ensemble, we use a technique empiayd] that absorbs the constraint into
the minimizing function. This step allows us to reduce thestmined minimization problem defining
the microcanonical equilibrium macrostates to a one-dsiveral, unconstrained minimization problem.
Rigorous analysis of the reduced problem being limited, g mostly on numerical computations to
complete our analysis of the set of equilibrium macrostadesause the thermodynamic parameter defining
the microcanonical ensemble is the energy per particke phase transition with respect to this ensemble
is defined by fixingK and varyingu. By analogy with the canonical case, our numerical analykibe
set of microcanonical equilibrium macrostates is based mueh more efficient approach that fixeand
varies K. The analysis with respect & rather than: allows us to solve in some detail the reduced one-
dimensional problem characterizing the equilibrium matates. We then extrapolate these results obtained
by fixing » and varyingK to physically relevant results that hold for fixéd and varyingu. As in the
case of the canonical ensemble, these include a secongd-cotinuous phase transition and a first-order,
discontinuous phase transition for different range&lof

The contributions of this paper include a rigorous globalgsis of the first-order phase transition in
the canonical ensemble. Blume, Emery, and Griffiths did allaoalysis of the spin per site to show that



their model exhibits a second-order phase transition fange of values o’ and that at a certain value of
K a tricritical point appears [3]. This tricritical point h#se property that for all smaller values &f, we
are dealing with a first-order phase transition. Mathenadljicthe tricritical point marks the beginning of
the failure of the local analysis; beyond this point one loasort to a global analysis of the spin per site.
While the first-order phase transition has been studied rioaily by several authors, the present paper
gives the first rigorous global analysis.

Another contribution is that we analyze the phase tramsitio the canonical ensemble both in terms of
the spin per site and the empirical measure. While all presssiudies of the BEG model except for [12]
focused only on the spin per site, the analysis in terms o&thpirical measure is the natural context for
understanding equivalence and nonequivalence of enssii@g

A main consequence of our analysis is that the tricriticahipe- the critical value of the Hamiltonian
parametetr” at which the model changes its phase transition behavian ®econd-order to first-order —
differs in the two ensembles. Specifically, the tricritigalint is smaller in the microcanonical ensemble
than in the canonical ensemble. Therefore, there existageraf values of such that the BEG model
with respect to the canonical ensemble exhibits a firstrgptiase transition while with respect to the mi-
crocanonical ensemble the model exhibits a second-ordeseptransition. As we discuss in Section 5,
these results are consistent with the observation, showrencally in [12], that there exists a subset of the
microcanonical equilibrium macrostates that are notzedlicanonically. This observation implies that the
two ensembles are nonequivalent at the level of equilibmuacrostates.

A final contribution of this paper is to present probabitidtinit theorems for appropriately scaled partial
sumsS,, = >~/ w; with respect to the canonical ensemble. These limits, wialtbw from our work in
Section 3 and known limit theorems for the Curie-Weiss madeived in [9, 10], include conditioned limit
theorems when there are multiple phases. In most casestiteilivolve the central-limit-type scaling'/?
and convergence in distribution 6§, /n'/? to a normal random variable. They also include the following
two nonclassical cases, which hold for appropriate clitiedues of the parameters defining the canonical
ensemble:

S,/n¥* 25 X, whereP{X € dz} = const exp[—const- 2] dz
and
S,/n5/% 25 X whereP{X € dx} = const exp[—const- 2%] dz.

As in the case of more complicated models such as the Isingintbése nonclassical theorems signal the
onset of a phase transition in the BEG model [6, Sect. V.8yTdre analogues of a result for the much
simpler Curie-Weiss model [6, Thm. V.9.5].

The outline of the paper is as follows. In Section 2, follogvhe general procedure described in [7],
we define the canonical ensemble, the microcanonical ersemtd the corresponding sets of equilib-
rium macrostates. In Section 3, we outline our analysis @fstructure of the set of canonical equilibrium
macrostates. Because the proofs involve many technaslitor ease of exposition we rely in this section
on graphical arguments which, though not rigorous, commgig motivate the truth of our assertions. The
interested reader is referred to [18] for full details anthpéete rigor. In Section 4, we present new theoret-
ical insights into, and numerical results concerning, tinecture of the set of microcanonical equilibrium
macrostates. In Section 5, we discuss the implicationsefdhults in the two previous sections concern-
ing the nature of the phase transitions in the BEG model, wwhicurn is related to the phenomenon of
ensemble nonequivalence at the level of equilibrium maates. Section 6 is devoted to probabilistic limit
theorems for appropriately scaled sufs



II. SETS OF EQUILIBRIUM MACROSTATES FOR THE TWO ENSEMBLES

The canonical and microcanonical ensembles are definethis &f probability measures on a sequence
of probability space$A™, F,,). The configuration spaces® consist of microstates = (wy, ..., w,) With
eachw; € A = {-1,0,1}, andF, is theo-field consisting of all subsets df”. We also introduce the
n-fold product measur®,, on 2,, with identical one-dimensional margingls= %(5_1 + 0o + d1).

In terms of the energy per particle, x defined in (1.1), for each € IV, 3 > 0, and K > 0 the
partition function is defined by

Zn(B,K) = /An exp[—nfhn k] dP,.

For setsB € F,, the canonical ensemble for the BEG model is the probabilidgasure

P g (B) = m '/BGXP[—nﬁhn,K] dP,. (2.1)

Foru € IR,r > 0, K > 0 and setsB € F,, the microcanonical ensemble is the conditional prokisbili
measure

PR ()

PAB|hyk € [u—r,u+r]} (2.2)
Pn{Bm {hn,K € [u—r,u—i—r]}}
Phnk € lu—ru+r]}

As we point out after (2.4), for appropriate valuesi@nd all sufficiently large: the denominator is positive
and thusP*"™¥ is well defined.

The key to our analysis of the BEG model is to express both #momical and the microcanonical
ensembles in terms of the empirical measlyedefined forw € A™ by

Ly = Ly(w,-) = % > 60, ()
j=1

L,, takes values ifP = P(A), the set of probability measures an We rewriteh,, x as

’P_ w2 7}_ . 2
hoe(w) = =215 —K(Lj_le>

n n
2

= /Ayan(w,dy)—K(/AyLn(wady)> -

For u € P define

2
Jr(p) = /Ayzu(dy)—K</Ayu(dy)) (2.3)
= (1 +po1) — K(m — pr)’.

The range of this function is the closed interf@ — K) A 0, 1]. In terms of fx we expressy, x in the
form

hn k(@) = [K(Ln(w))-

We appeal to the theory of large deviations to define the $atarmnical equilibrium macrostates and
microcanonical equilibrium macrostates. Since ang P has the formZ}:_1 wi0;, wherey; > 0 and



Z}:_l u; = 1, P can be identified with the set of probability vectorsiit?. We topologizeP with the
relative topology that this set inherits as a subseRéf The relative entropy ofi € P with respect t is
defined by

1
R(ulp) = > pilog(3us).

i=—1

Sanov’'s Theorem states that with respect to the producturesB,, the empirical measurds, satisfy the
large deviation principle (LDP) with rate functiaR(-|p) [6, Thm. VIII.2.1]. That is, for any closed subset
F of P we have the large deviation upper bound

1
li —log Py{L, € F} < — inf :
imsup —log Pr{ln € I} < — inf R(ulp)

n—oo

and for any open subsét of P we have the large deviation lower bound

lim sup llog P, {L, € G} > — inf R(ul|p).
n—oo M neG

From the LDP for theP,-distributions ofL,,, we can derive the LDPs df,, with respect to the two
ensembles’, 5 x and P%"X. In order to state these LDPs, we introduce two basic theymenic func-
tions, one associated with each ensemble.dpr0 and K > 0, the basic thermodynamic function for the
canonical ensemble is the canonical free energy

¢ (8) = — lim %loan(ﬂ, K).

n—oo

It follows from Theorem 2.4(a) in [7] that this limit existerfall 3 > 0 and K > 0 and is given by
¢r(8) = inf {R(ulp) + Bfr (1)}
neP
For the microcanonical ensemble, the basic thermodynamictibn is the microcanonical entropy

si(u) = —inf{R(plp) : p € P, fx (1) = u}. (2.4)

SinceR(u|p) > 0for all u, sk (u) € [—o0,0] for all u. We define dons to be the set of, € IR for which
sk(u) > —oo. Clearly, domsg coincides with the range ofx on P, which equals the closed interval
[(1—-K)AO0,1]. Foru € domsg and all sufficiently large: the denominator in the second line of (2.2) is
positive and thus the microcanonical ensemje* is well defined [7, Prop. 3.1].

The LDPs forL,, with respect to the two ensembles are given in the next theorehey are conse-
qguences of Theorems 2.4 and 3.2 in [7].

Theorem 2.1. (a) With respect to the canonical ensemlblg s i, the empirical measures,, satisfy the
LDP with rate function

Ig i (p) = R(plp) + Bf (1) — ox(5)- (2.5)

(b) With respect to the microcanonical ensembBjg"’, the empirical measures,, satisfy theLDP, in
the double limit. — oo andr — 0, with rate function

K () = { Rlole) + 1) 1 fcli) = 2.6)



Forpu € P ande > 0 we denote by3(y, ) the closed ball irP with centery and radiug. If Ig(p) > 0,
then for all sufficiently smalt > 0, inf,c () [5(1) > 0. Hence, by the large deviation upper bound for
L,, with respect to the canonical ensemble, foralt P satisfyingZ3(1) > 0, all sufficiently smalk > 0,
and all sufficiently large:

P, s x{Lln € B(p,e)} < exp{—n(infl,eB(Mve) Iﬁ(u)) /2],

which converges to 0 exponentially fast. Consequentlyribst probable macrostatesolvels x(v) = 0.
It is therefore natural to define the set of canonical equilib macrostates to be

Esx = {veP:Igk(v)=0} (2.7)
= {v € P:vminimizesR(v|p) + Bfx(V)}.

Similarly, because of the large deviation upper boundfgmwith respect to the microcanonical ensemble,
it is natural to define the set of microcanonical equilibrinmacrostates to be

gVl = lyepP: 1% w) =0} (2.8)
= {v € P : v minimizesR(v|p) subject tofx (v) = u}.

Each element in &3 and&%X has the formv = v_16_1 + 1oy + 16, and describes an equilibrium
configuration of the model in the corresponding ensemblejFo—1,0, 1, v; gives the asymptotic relative
frequency of spins taking the valye

In the next section we begin our study of the sets of equilibrimacrostates for the BEG model by
analyzing&s g .

lll. STRUCTURE OF THE SET OF CANONICAL EQUILIBRIUM MACROSTA TES

In this section, we give a complete description of thessgt of canonical equilibrium macrostates for
all values of3 and K. In contrast to all other studies of the model, which &xand vary3, we analyze
the structure o€ by fixing 3 and varyingK. As stated in Theorems 3.1 and 3.2, there exists a critical
value of 3, denoted by3. and equal tdog 4, such thats x has two different forms fop < 3. and for
B > B.. Specifically, for fixed3 < 3. £3 x exhibits a continuous bifurcation &S passes through a critical
valueKéz) (8), while for fixed 5 > (. &gk exhibits a discontinuous bifurcation &S passes through a
critical vaIueKél)(ﬁ). In Section 5 we show how to extrapolate this informatiomfoimation concerning
the phase transition behavior of the canonical ensemblediging 5: a continuous, second-order phase
transition for all fixed, sufficiently large values &f and a discontinuous, first-order phase transition for all
fixed, sufficiently small values ok .

In terms of the uniform measupe= %(5_1 + 0o + 91), we define

pp(dw;) = % - exp(—fw?) p(dwy), (3.1

whereZ(3) = [, eXp(—ﬁwjz-) p(dw;). The next two theorems give the form 8§ x for 3 < 3. and for

B> fe.

Theorem 3.1. Define3. = log4 and fix3 < (.. Let pg be the measure defined (8.1). The following
results hold.
(a) There exists a critical valug® (8) > 0 such that

(i) for & < K(8), Ep.1 = {ps);



(i) for K > K& (B3), there exist probability measures = v* (3, K) andv~ = v~ (8, K) such
thatv™ # v~ # pgand&s i = {vT, v}
(b) If we writevt € P asvt = v 6_1 + v 8o + v{ 01, thenv™ = 3761 + i 6o + v 01
(c) v* and v~ are continuous functions ok > Kéz)(ﬂ), and bothv™ — pg andv™ — pg as
K — (K& (3)*.

Property (c) describes a continuous bifurcatiodjne askK — (KC(Q) (3))*. This analogue of a second-
order phase transition explains the superscript 2 on ttieairi/alueKéz) (6). The following theorem shows
that for 3 > 3. the setfs k undergoes a discontinuous bifurcationfas— (Ké”(ﬁ))*. This analogue of
a first-order phase transtion explains the superscript h®rdrresponding critical vaIch(l)(ﬁ).

Theorem 3.2. Define3. = log4 and fix3 > (.. Let pg be the measure defined (8.1). The following
results hold.
(a) There exists a critical valué((gl)(ﬁ) > 0 such that

() for & < K(8), Egc = {ps);
(i) for K = Kc(l)(ﬁ), there exist probability measurest = vt (3, Kél)(ﬁ)) and v~ =
v=(8, KV (8)) such that+ # v~ +# pg and&s i = {pg, v+, v~}
(iiiy For K > KV (3), there exist probability measures™ = v+(8, K) andv~ = v~ (3, K) such
thatv™ #£ v~ # pgand&s x = {vT, v~}
(b) If we writevt € P asvt = v 0.1 + v do + 15 61, thenv™ = v 61 + v 6o + v, 61
Since bothv* (3, K) # ps andv=(8,K) # pg for all K > K(B), the bifurcation ins 5 at
K= Kc(l)(ﬁ) is discontinuous.

We prove Theorems 3.1 and 3.2 in several steps. In the fifst c@ried out in Section 3.1, we absorb
the noninteracting component of the energy per partictetime product measure of the canonical ensemble.
This reduces the model to a Curie-Weiss-type model, whintbeaanalyzed in terms of the empirical means
> =1 w;/m. The structure of the set of canonical equilibrium mactestéor this Curie-Weiss-type model
is analyzed in Section 3.2 fgf < . and in Section 3.3 foff > (.. Finally, in Section 3.4 we lift our
results from the level of the empirical means up to the leV#h® empirical measures using the contraction
principle, a main tool in the theory of large deviations.

A. Reduction to the Curie-Weiss Model

The first step in the proofs of Theorems 3.1 and 3.2 is to rewiié canonical ensemblg, s r in the
form of a Curie-Weiss-type model. We do this by absorbingrbmeinteracting component of the energy
per particleh,, x into the product measure &%, s xc. Defining S, (w) = 377, w;, we write

Prpc(dw) = ﬁ - expl—nBhn 1 ()] P (dw)

[ N2 n o\ 2

B 1 r Sn(w) 2 n
=z ook (52 et

_ o[ (50N
= 265 xp_ﬂK( . ”P(d ).

P, (dw)




In this formulaZ (5) = [, exp(—ﬂwjz)p(dwj) andP? is the product measure atf* with one-dimensional
marginalspz defined in (3.1).
We define

Zn(B, K) = /An exp [nﬂ (%ﬂ P’

SincePy s i is a probability measure, it follows that

~ _ Zn(ﬁ>K)
and thus that
2
P p i (dw) = m - exp [nﬁK (%) ] Pf(dw). 3.2

By expressing the canonical ensemble in terms of the emapineanss,,/n, we have reduced the
BEG model to a Curie-Weiss-type model. Cramér’s TheorenT fn 11.4.1] states that with respect to the
product measur®?, S,, /n satisfies the LDP oz with rate function

J3(z) = sup{tz — ca(t)}. (3.3)
teR

In this formulacg is the cumulant generating function defined by

ca(t) = log/Aexp(twl)pg(dwl) (3.4)

L+e Pt +e7t)

—
8 1+ 2¢ 7

Jj is finite on the closed intervéd-1, 1] and is differentiable on the open interyiat1, 1). This function is
expressed in (3.3) as the Legendre-Fenchel transform dirtite, convex, differentiable functions. By
the theory of these transforms [19, Thm. 25.1], [6, Thm. \3(8)], for eachz € (—1,1)

Jé(z) = (clﬁ)_l(z). (3.5)

From the LDP forS,, /n with respect taP?, Theorem 2.4 in [7] gives the LDP fd,, /n with respect to
the canonical ensemble written in the form (3.2).

Theorem 3.3.With respect to the canonical ensemblgg i written in the form(3.2), the empirical means
Sy /n satisfy the LDP ori—1, 1] with rate function

Is i = Jg(2) = BK =" — inf {J5(t) — K7} (3.6)

In Section 2 the canonical ensemble for the BEG model wassgpd in terms of the empirical measures
L,,. The corresponding sé} g of canonical equilibrium macrostates was defined as thef ggbbability
measures < P for which the rate functiods  in the associated LDP satisfiés x (v) = 0 [see (2.7)].
By contrast, in (3.2) the canonical ensemble is expresséetins of the empirical mear, /n. We now
consider the sefs ;- of canonical equilibrium macrostates for the BEG model egped in terms of the
empirical means. The last theorem makes it natural to défine as the set ot < [—1, 1] for which the



rate function in that theorem satisfiés x (z) = 0. Sincez is a zero of this rate function if and only if
minimizesJs(z) — BK 2%, we have

Es.xc = {2 € [~1,1] : z minimizes Js(z) — BK2%}. (3.7)

As we will see in Theorem 3.8, each ¢ Sg,K equals the mean of a corresponding measure ia
Es.xc- Thus, eachr € & i describes an equilibrium configuration of the model in teohthe specific
magnetization, or the asymptotic average spin per site.

Although J3(z) can be computed explicitly, the expression is messy. ldste@ use an alternative
characterization Ofg,K given in the next proposition to determine the points in 8&it This proposition
is a special case of a general result to be presented in [4].

Proposition 3.4.For z € IR define

G (2) = BK2* — c3(28K 2). (3.8)
Then for eacts > 0and K > 0
min{Jp(2) - GK 2*} = min{Gp rc(2)}- (3.9)

In addition, the global minimum points df(z) — 8K 22 coincide with the global minimum points 6f; x .
As a consequence,

Es.xc = {7 € R : z minimizesG s x ()} (3.10)
Proof. The finite, convex functiorf (z) = cg(28K 2) /26K has the Legendre-Fenchel transform

J3(z)/2BK for|z| <1
00 for |z| > 1.

f7(z) = sup{zz — f(x)} = {

zelR
We prove the proposition by showing the following three step

1 sup,ep{f(z) —2%/2} = SUP\Z\gl{ZQ/Q — f*(2)}

2. Both suprema in Step 1 are attained, the first for seraelR and the second for somec (—1,1).

3. The global maximum points ¢f(z)—22 /2 coincide with the global maximum points of /2— f*(z).
The proof uses three properties of Legendre-Fenchel treamsf

1. Forallz € R, f**(z) = (f*)*(=) equalsf(z) [6, Thm. VI.5.3(e)].

2. If for somex € IR andz € IR we havez = f'(x), thenf(x) + f*(z) = zz [19, Thm. 25.1], [6,
Thm. V1.5.3(c)]. In particular, it: = z, thenf(z) + f*(x) = z2.

3. Ifthere exists € (—1,1) andy € IR such that
fA(z) > f*(z) +y(z —z) forall z € [-1, 1], (3.11)
theny = (f*)'(z) [19, Thm. 25.1]. Hence by properties 1 and 2
[ @)+ 7 () = (@) + fy) = zy.
In particular, if (3.11) is valid withy = =, thenf(z) + f*(z) = 22
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Step 1 in the proof is a special case of Theorem C.1 in [5]. Borgeteness, we present the straightfor-
ward proof. LetM = sup,p{f(2) — 2%/2}. Since for anyjz| < 1andz € IR

f (2)+M>zz— f(z)+ M > zz—2°2/2,
we have

5 (2) + M > sup{zz — 2?/2} = 2%/2.
z€lR

It follows that M > 22/2 — f*(z) and thus that\l > sup,<;{z*/2 — f*(2)}. To prove the reverse
inequality, letN = sup|Z|S1{z2/2 — f*(2)}. Thenforanyz € R and|z| <1

22/24+ N >xz—2%/24+ N > zz— f*(x).
Since f*(x) = oo for |z| > 1, it follows from property 1 that

22+ N > |Sl|1<131{w2 — (@)} = f(2)

and thus thatV > sup,. p{f(2) — 22/2}. This completes the proof of step 1.

Sincef(z) ~ |z| asz — oo, f(2) —22/2 attains its supremum ovéR. Sincez?/2— f*(z) is continuous
andlim,_,,(f*)'(z) = oo, 22/2 — f*(2) attains its supremum ovér-1, 1] in the open interva(—1,1).
This completes the proof of step 2.

We now prove that the global maximum points of the two funddicoincide. Let: be any point inlR
at which f(z) — 22/2 attains its supremum. Then= f’(x), and so by the second assertion in property 2
f(x) + f*(z) = 2. The pointz lies in (—1, 1) because the range ¢f(z) = c3(2BK z) equals(—1, 1).
Step 1 now implies that

Sélﬂ%{f(Z)—f/?} = f(z)—2%/2
= 2%/2 — f*(z) = sup{z*/2 — f*(2)}.

|2I<1

We conclude that?/2 — f*(z) attains its supremum ate (—1,1).
Conversely, let: be any point in(—1,1) at whichz2/2 — f*(z) attains its supremum. Then for any
z € [—1,1]

2?2~ f(x) 2 2°/2 — f*(2).
It follows that for anyz € [—1, 1]
fr(2) 2 fH(2) + (z* = 2%)/2 2 f(2) + (2 - 2).

The second assertion in property 3 implies tfiatr) + f(x) = 22, and in conjunction with step 1 this in
turn implies that

sup {2%/2 — f*(2)} = 2°/2 — f*(x)

|2I<1
= f(z) —2%/2 = sup{f(z) - 2*/2}.
z€R

We conclude thaf (z) — 22 /2 attains its supremum at This completes the proof of the propositioll.
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Proposition 3.4 states thé, x consists of the global minimum points@f; x (z) = BK 22 —c3(2BK 2).
In order to simplify the minimization problem, we make theanbe of variables — z/24K in Gg g,
obtaining the new function

52

Fpic(2) = Gaxc(/28K) = 0 — eal2). (312)
Proposition 3.4 gives the alternative characterizatiofiggé to be
5 w
Epx = {QBK € IR : w minimizesFg g (w )} (3.13)

We useFj  to analyzefs i because the second term 8§ x contains only the parametgrwhile both
terms inGs i contain both parametefsand K. In order to analyze the structuref i, we take advantage
of the simpler form ofF x by fixing 5 and varyingK. This innovation makes the analysiséfy‘,K much
more efficient than in previous studies. Our goal is prove tie elements Ofg,K change continuously

with K for all sufficiently small values ofs [Thm. 3.1] and have a discontinuity & = Kc(l) for all
sufficiently large values gf [Thm. 3.2]. )
In order to determine the minimum points Bf x and thus the points ifig i, we study its derivative

Fj e(w) = %LK — c(w). (3.14)
Fé x (w) consists of a linear patt /23K and a nonlinear patt’ﬁ ). According to Theorems 3.1 and 3.2,
EgK exhibits a continuous bifurcation i when3 < §. and a dlscontlnuous bifurcation I where
B. = log4. As we will see in Sections 3.2 and 3.3, the basic mechanisteniying this change in the
bifurcation behavior o3 i is the change in the concavity behaviorcg(w) for 6 < (. versus@ > 3.,
which is the subject of the next theorem. A related phenomeras observed in [8, Thm. 1.2(b)] and in
[11, Thm. 4] in the context of work on the Griffiths-Hurst-3fm&an correlation inequality for models of
ferromagnets; this inequality is used to show the concafithie specific magnetization as a function of the
external field.

Theorem 3.5.Definel. = log 4 and for3 > . define
we(B) = cosh™! (%eﬁ — 4e—5) > 0. (3.15)

Then the following hold.
(@) For g < 3., c’ﬁ(w) is strictly concave foiw > 0.
(b) For 3 > ., ¢j(w) is strictly convex for0 < w < w.(6) and cj(w) is strictly concave for

w > we(B).
Proof. (a) We show that for alb < £, ¢f'(w) < 0 for all w > 0. A short calculation yields

m _ [6_6(611} —e )1 — e_ﬁ(ew +e ") — 86_26]
¢ (w) = [+ e Pl + e o)P (3.16)
[2e=7 sinh w][1 — 27 coshw — 8e~2F]

[1+ 2e=P coshw]3

Since2e " sinh w and1 + 27 cosh w are positive forw > 0, ¢4 (w) < 0 for w > 0 if and only if

1 —2e P coshw — 828 < 0 forw > 0.



12

The inequalitycosh w > 1 for w > 0 implies that
[1 —2ePcoshw —8 ] < [1 =27 —8e 2] = (1 — 4e™P)(1 + 2¢77) forall w > 0.

Therefore, for all3 < log4, cjg'(w) < 0 forw > 0.

(b) Fixing 5 > 3., we determine the critical value.(3) such that’ﬁ(w) is strictly convex fol) < w <
w,(/3) and strictly concave fow > w.(3). From the expression faf]' (w) in (3.16),cj (w) > 0 for w > 0
if and only if (1 — 2¢™7 cosh w — 8e~27) > 0 for w > 0. Thereforec;(w) is strictly convex for

1
0 < w < cosh™! (§eﬁ — 46_5) .

On the other hand, sinag/(w) < 0 for w > 0 if and only if (1 — 2¢=7 coshw — 8e~27) < 0 for w > 0,
we conclude thatj(w) is strictly concave for

1
w > cosh™! (§eﬁ — 46_5) .
This completes the proof of part (bl

The concavity description cﬂ’ﬁ stated in Theorem 3.5 allows us to find the global minimum {soaf

Fs. i and thus the points ifi; x for all values of the parametegsand K. We carry this out in the next two
sections, first folp < . and then fors > (.. In Section 3.4 we use this information to give the structure
of the setf; i of canonical equilibrium macrostates defined in (2.7).

B. Description of £s,k for 8 < .

In Theorem 3.1 we stated the structure of thefsgt of canonical equilibrium macrostates for the BEG
model with respect to the empirical measures whert 5. = log4. The main theorem in this section,
Theorem 3.6, does the same for the&gf, which has been shown to have the alternative charactenzat

~ w ..
Epr = {%—K ceR:w m|n|m|zesF5,K(w)} . (3.17)

We recall thatFs x (w) = w? /48K — cg(w), wherecg is defined in (3.4). In Section 3.4 we use the fact
that there exists a one-to-one correspondence betfiggnand&; x to fully describe the latter set for all
6 < p.andK > 0.

According to Theorem 3.5, fo¥ < £, c’ﬁ is strictly concave forv > 0. As a result, the study (ﬁ‘@ K is
similar to the study of the equilibrium macrostates for tlassical Curie-Weiss model as given in Section
IV.4 of [6]. Following the discussion in that section, we @sgraphical argument to motivate the continuous
bifurcation exhibited b)f@K for 8 < (.. A detailed proof is given in Section 2.3.2 of [18].

Minimum points of F5 k satisfy } ;- (w) = 0, which can be rewritten as

w

5 = ) (3.18)

Since the slope of the functiom — w/26K is 1/28K, the nature of the solutions of (3.18) depends on
whether

1
5(0) < WK or 0< WK < ¢(0).
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Define the critical point

L1 1
28d5(0)  4BeP + 283

We use the same notation here as for the critical value in fEne®.1 because, as we will later prove, the
continuous bifurcation ik exhibited by both set§s x and&s i occur at the same poim'éz) (B) defined
in (3.19).

We illustrate the minimum points df x graphically in Figure 1 fo3 = 1. For three ranges of values
of K this figure depicts the two components E&K: the linear componenty /23K and the nonlinear
component/;(w). Figure 1(a) corresponds o< K < K (). Since from (3.19§33(0) = 1/2BK§2) (B8),
for0 < K < Kc(z) (8) the two components df’é,K intersect at only the origin, and thi#; x has a unique

global minimum point atv = 0. Figure 1(b) corresponds 6 = Kc(z) (6). In this case the two components
of FéK are tangent at the origin, and agdip x has a unique global minimum point at = 0. Figure

(3.19)

1(c) corresponds t& > K(EQ) (B). For suchK the global minimum points of; x are symmetric nonzero
pointsw = +w (8, K), w(, K) > 0. In addition, forK > K (8), w(B, K) is a continuous function and

asK — (KC(2) (3)*, w(B, K) converges td. As a result, we conclude th&} x exhibits a continuous
bifurcation with respect td.

(a) (b) (c)
1 1 1
i e -

FIG. 1: Continuous bifurcation fo8 = 1. (a) K < K2 (8), (0) K = K2 (3), () K > K2 (B)

Figures 1(a) and 1(c) give similar information as Figures3(v) and 1V.3(d) in [6], which depict the
phase transition in the Curie-Weiss model. In these two akfigures the functions being graphed are
Legendre-Fenchel transforms of each other.

Figures 1(a)—(c) motivate the following theorem concegrilre continuous bifurcation with respectio
exhibited byé’g,K in the BEG model. Itis proved in Theorem 2.3.6 of [18]. Theifys quantityz(3, K) in
parts (b) and (c) of the next theorem equals’, K') /28K, wherew (3, K) is the positive global minimum

point of Fj3 i for K > KM(B).

Theorem 3.6. Define 3, = log 4 and fix3 < f.. Defineés x by (3.7)and the critical valuek” (3) by
(3.19) The following results hold.

(a)For K < K (8), €51 = {0}
(b) For K > K (3), there exists a positive numbg(3, K) such thatfs x = {+£3(3, K)}.
(c) 2(B, K) is a strictly increasing continuous function &f > K(EQ) (8),and2(8,K) — 0as K —

(K& (9)+.

This theorem completes our description of the continuofis¢ation exhibited b)gg,[( for 6 < B.. In
the next section we describe the discontinuous bifurcatiimbited by&s x for 3 in the complementary

regions > f..
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C. Description of £,k for B > B

In Theorem 3.2 we gave the structure of the&gf of canonical equilibrium macrostates for the BEG
model with respect to the empirical measures when (.. The main theorem in this section, Theorem
3.7, does the same for the $&t x, which has been shown to have the alternative characterizat

~ w L
gk = {%—K clR:w m|n|m|zesF5,K(w)} : (3.20)
As in Section 3.2F i (w) = w? /48K — cg(w), wherecg is defined in (3.4). In the next section we use
the fact that there exists a one-to-one correspondencesbefly - and&s ¢ to fully describe the latter set
forall 6 > g.andK > 0.
Minimum points ofF3 x satisfy the equation
w /

Fj ie(w) = WK cz(w) = 0. (3.21)

In contrast to the previous section, where foK 3, c'ﬁ is strictly concave forw > 0, part (b) of Theorem
3.5 states that fop > S, there existav. = w.(8) > 0 such thatc; is strictly convex forw € (0,w.)
and strictly concave fow > w.. As a result, for3 > 3. we are no longer in the situation of the classical
Curie-Weiss model for which the bifurcation with respectifas continuous. Instead, fgf > (., askK
increases through the critical valméc(l)(ﬁ), Sﬁ,K exhibits a discontinuous bifurcation.

While the discontinuous bifurcation exhibited B/yx for 5 > (. is easily observed graphically, the full
analytic proof is considerably more complicated than indases < (.. As in the previous section, we
will motivate this discontinuous bifurcation via a grapdli@argument, referring the reader to Section 2.3.3
of [18] for details.

For g > (3. we divide the range of the positive paramekéiinto three intervals separated by the values
K, = K;1(B) and Ky = K»(3). K is defined to be the unique value &f such that the linev/28K is
tangent to the curvelﬁ at some positive pointy = w1 (). The existence and uniquenessaf andw; are
proved in Lemma 2.3.8 in [18]K is defined to be the value @€ such that the slopes of the line/25K
and the curve:’ﬁ atw = 0 agree. Specifically,

e Lo 1 1

27 23d(0)  4Be P o
Figure 2 represents graphically the valuesiaf and K, for 5 = 4. That figure exhibitsk; < Kj; in
Lemma 2.3.9 in [18] it is proved that this inequality holds &l 5 > 3..

In each of Figures 3-7, for fixed > (. and for different ranges of values &f > 0, the first graph(a)
depicts the two components &, ,.: the linear component/28K and the nonlinear componefs. The
second graptib) shows the corresponding graph6f . In these figures the following values gfwere
used:3 = 4 in Figures 3, 5, 6, 7 and = 2.8 in Figure 4.

As we see in Figure 3, foK € (0, K] the linear term intersects the nonlinear term at only theimri
and thusFj i has a unique global minimum point at = 0. Since/ is fixed, the graph of the nonlinear
term c; also remains fixed. As the value &f increases, the slope of the linear tewyi26K decreases,
leading to the discontinuous bifurcationdp x with respect tax.

The graph off; i is depicted in Figure 4 foK € [K», 00). We see thaf; i has two global minimum
points atw = +w(f, K), wherew(s, K) is positive. Therefore, by (3.20), for < K < K; we have
Es.ix = {0} and forK > Ko we haves i = {+2(6, K)}, wherez(3, K) = (83, K) /28K is positive.

Now suppose thai( € (K7, K»). In this region, there exist& (3, K) > 0 such thatFj; i has three
local minimum points atv = 0 andw = +w(3, K). As we see in Figure 5, foK slighty greater than
Ky, Fg k(0) < F i (w(B, K)); as a result, the unique global minimum pointff x is w = 0. On the

(3.22)
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FIG. 2: Graphical representation of the valuésand K5 for 5 = 4.

(a) (b)
1
1.5
-10 10
-1
-10 10

FIG. 3: (a) Graph of two components b, ;- and (b) graph of’s x for K € (0, K]

other hand, we see in Figure 6 that fgrslightly less thani,, Fj3 i (0) > Fj (0 (3, K)); as a result, the
global minimum points of; x arew = +w(B3, K). As K increases over the intervek, K3), Fj3 i (0)
increases and’s i (w(8, K)) decreases continuously and consequently, as Figure 7Isgteere exists

a critical vaIueKc(l)(ﬂ) such thatFB 0) =F )(w(ﬁ, K)); as a result, the global minimum

8,k (8
points ofFﬁvKél)(ﬁ)

In conclusion, we have the following picture: féf; < K < Kél)(ﬁ), Es.xc = {0}; for K = Kél)(ﬁ),
Esx = {0,+£2(8,K)}; and for K > KM (B), E5.x = {+3(8,K)}. Lastly, sincez(8, KV (3)) is
positive, the bifurcation exhibited tfj; x at K = Kél)(ﬂ) is discontinuous. The same notatiKrﬁl)(ﬂ) is
used here to denote the critical value for the bifurcationileiied by&s ;- as we used to denote the critical
value for the bifurcation exhibited b§s - stated in Theorem 3.2. This is appropriate because the two
critical values are equal.

The discontinuous bifurcation exhibited By x for 8 > j. is described in the following theorem. This
result corresponds to Theorem 2.3.7 in [18], where a commetof is presented. The quantiys, K)
in parts (b)—(d) of the next theorem equal§s, K) /28K, wherew (S, K) is the positive global minimum
point of Fj3  for K > KM (3).

KO
arew = 0 andw = +w(f3, K).

Theorem 3.7.Define the sefg,K by (3.7). For afixedg > (. = log 4, there exists a critical vaIuKél)(ﬁ)
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(a) (b)
1
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FIG. 4: (a) Graph of two componentSB},_’K and (b) graph o5  for K > K>

(a) (b)
1
0.5
.10 10
-1 .10 10

FIG. 5: (a) Graph of two components 6, ;- and (b) graph of s x for K1 < K < Kél)(ﬁ)

such that the the following hold.

(@) For K < KV (), £ = {0}.

(b) For K = KV(B), £, = {0, £3(8, K)} wherez(3, K) > 0.

(©) For K > K(8), €5 = {£2(8, K)} wherez(3, K) > 0.

(d) For K > Kc(l)(ﬁ), Z(8, K) is a strictly increasing continuous function alﬁdﬁ,Kél)(ﬁ)) > 0.
Therefore £3 i exhibits a discontinuous bifurcation.

Together, Theorems 3.6 and 3.7 give a full description OBQTéﬁJ{ for all values ofg and K. In the
next section, we use the contraction principle to lift owsules concerning the structure of the égj[K up
to the level of the empirical measures, making use of a ormocorrespondence between the points in the
two setsE i and&, i of canonical equilibrium macrostates.

D. One-to-One Correspondence Betweeis x and £3,x

We start by recalling the definitions of the séisx and€s k-
Es.x = {v € P:vminimizesR(v|p) + Bfk(v)} (3.23)
and

Es.ic = {z € [~1,1] : z minimizesJs(2) — BK 2°}. (3.24)
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FIG. 6: (a) Graph of two components 8, ;- and (b) graph of’; x for Kél)(ﬁ) < K < Ky

(a) (b)
1
0.5
-10 10
-1 -10 10

FIG. 7: (a) Graph of two components 6}, ;- and (b) graph of’s i for K = Kc(l)(ﬁ)

In the definition o€ i, R(y|p) is the relative entropy qf with respect tg = 2(6_1+ 380 +01) and f (1)

is the function defined in (2.3). In the definition 5&7;(, Jg is the Cramér rate function defined in (3.3).
We now state the one-to-one correspondence between ths poify & and the points €5 ;.. According

to Theorems 3.6 and 3.7, ;- consists of eithet, 2 or 3 points.

Theorem 3.8.Fix 8 > 0 and K > 0 and suppose thafs x = {z};_,, 7 = 1,2 or 3. Definevy, k =
1,...,7, to be measures i with densities

dv . 1

d—k(y) = exp(try) - : (3.25)
pB /A exp(try)ps(dy)

wheret,, is chosen such that, y v (dy) = 2. Then for eactk = 1, ..., r, ¢}, exists and is unique, arth x
consists of the unique elememisk = 1,...,r. Furthermorejt, = 26Kz, fork =1, ..., r.

The proof of the theorem depends on the following two lemmBsth lemmas use the contraction
principle [6, Thm. VIII.3.1], which states that for alle [—1, 1]

Tp(2) = min { Rislog) s o€ P, [ yutdy) = =}, (3.26)

Lemma3.9.Forg > 0andK >0

min {R(u\pﬁ) - BK (/Ayu(dy))z} = min {Jﬁ(z) - BKZQ} :
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Proof. The contraction principle (3.26) implies that

min {R(ulpﬁ) — K (/A y“(dy))z}

= ﬁigrimin{R(Mpﬁ) - BK </ y,u(dy))2 p € p’/l\y’u(dy) _ z}

= min (min{R plpg) e P, /y,u dy) —z})—ﬁKzz

|2|<1
= min {Js(2) - B2}
This completes the proofll
The second lemma shows that the mean of any measaré; y is an element of 5 .

Lemma 3.10.Fix 3 > 0 and K > 0. Givenv € &3 ¢, we definet = [, yv(dy). Thenz € &5 k.

Proof. Sincev € &£ k, v is a global minimum point of2(u|ps) — BK ([, y u(dy))?. Thus for ally € P

2

R(vlps) - 0K ([ yu(dy>)2 — R(vlps) ~ BKZ* < Rlulog) - 0K [ yu(dy)) .

In particular, this inequality holds for any that satisfies/, y u(dy) = z. For suchy, the last display
becomes

R(v|pg) < R(plpgs)-

Thusv satisfies
R(vlps) = min { R(ulpa) s w & P, [ yntdy) =2}

The contraction principle (3.26) and Lemma 3.9 imply that
2
T5(2) ~ BKZ = R(vlps) - 0K ( [ yviay))

_ lggg{R(ulpﬁ) — K (/Ay“(dy)>2}

= |H|u<n1{J5( z) — BK %Y.

Thereforez ¢ 567]{, as claimed. This completes the prod.
We next prove Theorem 3.8.

Proof of Theorem 3.8. A short calculation shows that for apye P

R(ulp) + Bfr(p) — Vig?fD{R(V\p) + Bfx(v)}

— R(ulps) - 05 ( [ W(dy)>2 —32;;{R<u|pﬁ> o (. y,,<dy>>2}.
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Hence we obtain the following alternate characterizatiDi 0y :

2
Es Kk = {1/ € P : v minimizesR(v|pg) — BK (/ yu(dy)) } . (3.27)
A
For eachy; € &5 i, define the set

Aki{uepi/l\yﬂ(dy)zzk}-

We first show for eaclt = 1, .., , 4 is the unique global minimum point @ (|pg) — BK ([, y,u(dy))z
over A;. We then prove that

uienAfk{R(u!pﬁ) - K (/Ayu(dy))Q} = uigjl{R(N’Pﬁ) - BK (/Ayu(dy))Q}

forallk,¢ = 1,...,r. Itwill then follow that{} }}._, equals the set of global minimum points®f.|ps3) —
OK (fAy,u(dy))z over the setd = J;,_; Ax. Finally, by showing that all the global minimum points of
R(ulpg) — BK ([, v pu(dy))? lie in A, we will complete the proof thafls - = {vx};_,. If r = 2 or 3, then
since [, y vi(dy) = z, itis clear that ifz;, # z, thenvy, # v,.

By Theorem VIII.3.1 in [7], for eaclk = 1,...,r, the pointt; in the statement of Theorem 3.8 exists
and is unique,

Js(2) = R(vklpg), (3.28)

and R(u|pg) attains its infimum overl;, at the unique measuteg.. Therefore, for eack = 1,...,r, v is
the unique global minimum point d&(u|pg) — BK ([, y u(dy))? over the setdy.
We next show that

uiEnAfk{Rwﬁ) o (. yu(dw)z} - Higg[{mm) - ([, yu(dy)>2}

forallk,/ =1,...,r. Sincez, z; € E’g,K, 21, andz, are global minimum points of(z) — BKz%. Thus by
(3.28), we have

2
inf {R(ulpﬁ)—ﬁK </Ayu(dy)) } = nf R(plps) — BE 2,

HEA
= Ja(zk) — BK 2
= Ja(z) — BK 2}
= inf R(ulps) — BK 2
HEA,

_ “igjz{R(Mpﬁ) —BK (/Ay“(dy)y}'

As aresult{v;};_, equals the set of global minimum points Bfy|ps) — 6K ([, y u(dy))* over the set
A = Uj—q A

Lastly, we showR(u|pg) — BK ([, y n(dy))? attains its global minimum at points id. Let o be a
global minimum point ofR(u|pg) — 5K(fAyu(dy))~2. By (3.27), this implies that € £3 . Define
¢ = [yyo(dy). Then Lemma 3.10 implies thgte &3 i and thus that = z; for somek = 1,...,r. It
follows thato € A, C Aforsomek =1,...,r.
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The last step is to prove thgt = 28K z, for k = 1, ..., r. From definition (3.4), we have

clﬁ(tk) = / yvp(dy) = 2.

A

In turn, the inverse relationship (3.5) implies that
tp = (Clﬁ)_l(zk) = Jé(zk)

Therefore, since;, € 55,1@ the definition (3.24) guarantees thatis a critical point ofJg(z) — BK22.
Thus,

tk = Jé(zk) = 25sz. (329)

This completes the proof of Theorem 3.

E. Proofs of Theorems 3.1 and 3.2

Theorem 3.1 gives the structure of the &gtx- of canonical equilibrium macrostates, pointing out the
continuous bifurcation exhibited by that set for< 3. = log 4. The structure of 3 x for 3 > 3., given in
Theorem 3.2, features a discontinuous bifurcatiofinThe proofs of these theorems are immediate from
Theorems 3.6 and 3.7, respectively, which give the straodxﬂé’g,K for 6 < 5. and forg > f3., and from
Theorem 3.8, which states a one-to-one correspondencedesy ;- and&s .

Before proving Theorems 3.1 and 3.2, it is useful to expressmeasuregs andv,, in Theorem 3.8
in the fOI’mSpﬁ = p57_15_1 + p57050 + p57151 andy, = I/k7_15_1 + I/k7050 + I/k7151, respectively. Since
ty = 28K z, in terms ofz;, € £5 x we have

e P 1 e P
PB,—1 = 11 2B PR = 11 20-8 PB1 = 1128
and
o—28Kz—0 1 028K 2,—3
T TCEE) S ™Mo R M T OB R
Here

C(ﬂa K) — 6—2,8sz—,8 + eQﬁsz—,B +1.

In particular,v, = pg whenz;, = 0.

We first indicate how Theorem 3.1 follows from Theorem 3.& Fi< 3.. The critical valueKéz) (8)
in Theorem 3.1 coincides with the vallléf) (8) in Theorem 3.6. Fok < Kc(z) (8), part (a) of Theorem
3.6 indicates thafs i = {0}; hences x = {ps}. ForK > K (B), part (b) of Theorem 3.6 indicates
thatéﬁvK = {+2(8, K)}, wherez(3, K) > 0. It follows that the measures™ andv~ in part (a)(ii) of
Theorem 3.1 are given by (3.25) with = 2(5, K) andz, = —Z(f, K), respectively. Sincé(3, K) > 0,
it follows thatv™ # v~ # pg. Finally, part (c) of Theorem 3.6 allows us to conclude thatandv~ are
continuous functions o > K!”(3) and that both/* — pgandv- — pgaskK — (K (8))*. This
completes the proof of Theorem 3.1.

In a completely analogous way, Theorem 3.2, including tisedditinuous bifurcation noted in the last
line of the theorem, follows from Theorem 3.7.
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In this section we have completely analyzed the structuréhefsetés - of canonical equilibrium
macrostates. In particular, we discovered thatfoxK (3. £z x undergoes a continuous bifurcation at
K=K? (B) [Thm. 3.1] and that fop > 3. £3 x undergoes a discontinuous bifurcationféat= Kél)(ﬁ)
[Thm. 3.2]. We depict these bifurcations in Figure 8. Whie second-order critical valué§£2) (B) are
explicitly defined in Theorem 3.6, the first-order criticailuvech(l)(ﬁ) in the figure are computed numer-
ically. The numerical procedure calculatﬁél)(ﬂ) for fixed values of3 by determining the value ok
for which the number of global minimum points 6f; x (z) changes from one at= 0 to three at: = 0
andz = +2(3, K), wherez(3, K) > 0. According to these numerical calculations for the distwtus
bifurcation, it appears tha’t’c(l)(ﬁ) tends tol asg — oco. However, we are unable to prove this limit.

In Section 5 we will see that Figure 8 is a phase diagram thstribes the phase transitions in the
canonical ensemble gschanges. We will also show that the nature of the bifurcatistudied up to this
point by varying K while keepingg fixed is the same if we varg and keepK fixed instead. The latter
situation corresponds to what is referred to physically ahase transition; specifically, the continuous
bifurcation corresponds to a second-order phase transitid the discontinuous bifurcation to a first-order
phase transition. In order to substantiate this claim coricg the bifurcations and the phase transitions,
we have to transfer our analysis&f x from fixed 3 and varyingK to an analysis of; x for fixed K and
varying G.

In the next section we study the BEG model with respect to tiloeamanonical ensemble.

Double Phase
Region

k=K@

\ i

©— - O- - 0---0---0- -0 — -4

canon
K
tri

=1.0820 |

Single Phase Region

0 I I I I I
0 0.5 1 15 2 25 3

FIG. 8: Bifurcation diagram for the BEG model with respecthie canonical ensemble

IV. STRUCTURE OF THE SET OF MICROCANONICAL EQUILIBRIUM MACR  OSTATES

In previous studies of the mean-field BEG model with respe¢hé microcanonical ensemble, results
were obtained that either relied on a local analysis or usigetlg numerical methods [1, 2, 12]. In this
section we provide a global argument to support the existafica continuous bifurcation exhibited by
the set€“X of microcanonical equilibrium macrostates for fixed, sigintly large values of: and for
varying K. Specifically, for fixed, sufficiently large £** exhibits a continuous bifurcation d§ passes
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through a critical value{(£2) (u). The argument is similar to the one employed to analyze therdeal
ensemble in Section 3. However, unlike the canonical cakeyava rigorous analysis of the structure of
the sets x of canonical equilibrium macrostates was obtained for allies of3 and K, the analysis of
gk for sufficiently largew and varyingK relies on a mix of analysis and numerical methods. At the
end of this section we summarize the numerical methods wsddduce the existence of a discontinuous
bifurcation exhibited bye™* for fixed, sufficiently smalk: and varyingK. In Section 5 we show how to
extrapolate this information to information concerning fphase transition behavior of the microcanonical
ensemble for varying:: a continuous, second-order phase transition for all seffity large values of<
and a discontinuous, first-order phase transition for dficently small values ofi.

We begin by recalling several definitions from SectiorP2denotes the set of probability measures with
supportA = {—1,0,1}; p denotes the measuéeéé_l +dp+ 1) e PiforueP

1
R(plp) = > pilog3u;

i=—1

denotes the relative entropy pfwith respect tg; and fx (1) is defined by

fr(p) = /Ayzu(dy) - K </A yu(dy))2
= (1 + p-1) — K(p1 — p1)?.
For K > 0 we also defined the set of microcanonical equilibrium maates by
Evl = fyep. 1vKw) =0} (4.1)
= {v € P : v minimizesR(v|p) subject tofx (v) = u},

EwE is well defined forK > 0 andu € domsyk = [(1 — K) A 0,1]. Throughout this section we fix
u € domsg.

Determining the elements ii““* requires solving a constrained minimization problem, Whithe
dual of the unconstrained minimization problem associatétl the set&s i of canonical equilibrium
macrostates defined in (2.7). In order to simplify the arialgéthe set€**, we employ the technique used
in [1] that reduces the constrained minimization problerfiniteg £X to a one-dimensional, unconstrained
minimization problem. For fixed > 0 andu € domsg, we define

Dux ={n€P: fr(pn)=u}. (4.2)
Foru € Dy,k, letz = puy — p—1 andq = pg + p—y. Sincep € D, i implies that
Fr() = (1 + po1) — K — pe1)? = u,

we see thay = u + K22. Thus, fory € D, x, we have

1
Rulp) = > pilog3u;

i=—1

= q;zlog E(Q—Z)} + (1 —q)log[3(1 — q)] + q;rzlog E(HZ)]
= q;rzlog(qﬂLZ)Jrq;Zlog(q—z)

+ (1 —q)log(1 — q) — (qlog2 — log 3).
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Settingg = u + K 22, we define the quantity

. +z -z
Rux(z) = 17 loglg+2) + 15" log(q - 2) (4.3)

+ (1 —¢)log(1 - q) — (qlog 2 —log 3)

and the set
My ={2€R:z=pu; —p_, forsomeu € D, x}. (4.4)

The derivation ofR,, x makes it clear thaM,, x C (—1, 1) is the domain ofR,, .
We next introduce the set

EWR = {2 € M, x : ZminimizesR, x(2)}.

The following theorem states a one-to-one correspondesiweelen the elements 6f-% and€*X. In[12],
for particular values of, and &', numerical experiments show théit-X consists of eithet, 2 or 3 points.
Although we are not able to prove that this is valid forak domsy andK > 0, because of our numerical
computations we make it a hypothesis in the next theorem.

Theorem 4.1. Fix K > 0 andu € domsg. Suppose®’ = {zYo_,, v = 1,.,3. Definey, =
S 6 € P by the formulas

L u+ K22+ 2 L ut Kz — 2 _
Vg1 = ———F—, Vg 1=——F7——, Vgo=1—v;1—v, 1.
2 2
Then&™X consists of the distinct elemenig k = 1,...,7.

Proof. Using the definition (4.2) oD, x, we can rewrite the sef“ X of microcanonical equilibrium
macrostates defined in (4.1) as

WK = (v € D, i : vis a minimum point ofR(1|p)}.

We show that folk = 1, .., 7, fx(vx) = vwandR(vg|p) < R(ulp) for all u € D, k for which p # vy,.
From the definition of/, we have

free) = Wra +vk—1) — K(wgr —ve—1)> = (u+ K23) — K22 = u.
Thereforey;, € D,k forall k = 1,...,7. Since for allzy, zp € E5, k, 0 =1,...,7
R(vk|p) = Rui(21) = Ru i (20) = R(velp),

it follows that R(vy|p) are equal foralk =1, ..., r.
We now considep = Z}:_l wid; € Dy i suchthap # v forallk = 1,...,r. Defining¢ = 1 —p—1,
we claim that{ # z; forall k = 1, ..., r. Suppose otherwise; i.e. for somg

p1—p—1 = (=2 = Vg1 — Vi —1. (4.5)
But i € D, i implies thatfx (1) = v = fx(v) and thus that
p1+ po1 = Vg1 + Vg1 (4.6)

Combining equations (4.5) and (4.6) yields the contraoiicthat, = v;. Becausel # z for all k =
1,...,r, it follows that¢ ¢ £“% and thus thaR, k(zx) < Ry x(¢) forall k = 1,...,r. As a result, for
k=1,...,r we have

R(vk|p) = Ry, ik (2k) < Ry, i (C) = R(plp).
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We complete the proof by showing that#f # z,, thenv, # v,. Indeed, ifv, = vy, then for each
choice of sign we would hav& 27 + 2, = K22 + 2. Since this leads to the contradiction that= 2, the
proof of the theorem is completd

Theorem 4.1 allows us to analyze the §&t* of microcanonical equilibrium macrostates by calculating
the minimum points of the functioR,, x defined in (4.3). Define

q+ =z q—=z
|
5 og(q+z)+ 5

ouKk(z) = log(q —2z) + (1 — q)log(1 — q), whereq = u + K22

With this notation (4.3) becomes
Rux(2) = vur(2) — (u+ Kz*)log2 + log 3.

This separation of?,, x into the nonlinear component, x and the quadratic component is similar to
the method used in Sections 3.2 and 3.3 in determining theesits in the sef; x. There we separated
the minimizing functionfs x (w) into a nonlinear componeant;(w) and a quadratic componeat /43K;
minimum points ofFj g satisfyFé,K(w) = clﬁ(w) —w/2BK = 0. Solving this equation was greatly
facilitated by understanding the concavity and convexitpprties ok, which are proved in Theorem 3.5.

Following the success of this method in studying the carad@nsemble, we apply a similar technique
to determine the minimum points @, . We call a pair(u, K') admissible ifu € domsg. While an
analytic proof could not be found, our numerical experirsestiow that there exists a curve = C(u)
in the (u, K')-plane such that for all admissible, K') lying above the graph of this curve;, ;. is strictly
convex on its positive domain. The graph &f = C(u) is depicted in Figure 9. We denote by~ the
set of admissibldu, K') lying above this graph and b§_ the set of admissibléu, K') lying below this
graph. Using a similar argument as in the proof of Theorenf@.8he canonical case, we conclude that
for all (u, K) € G the BEG model with respect to the microcanonical ensemifébiz a continuous

bifurcation ink; i.e., there exists a critical valug'” (v) > 0 such that the following hold.
1. Fork < K (u), £-K = {0}.
2. Fork > K (u), there exists a positive numbgfu, K) such tha€** = {+7(u, K)}.

3. lim, u, K) =0.

(k®qy+ 2
Combined with the one-to-one correspondence betweeneheeets o and£™X proved in Theo-
rem 4.1, the structure & just given yields a continuous bifurcation i exhibited by&*¥ for (u, K)
lying in the regionG™ above the graph of the curv€ = C(u). Similar to the definition of the critical value
@ (3) given in (3.19) for the continuous bifurcation i exhibited by k., the critical valuek(? (u)is
the solution of the equation

wx(0)=0 or @ r(0)=2Klog?2.
Consequently, sincg, ,(0) = 1/u + 2K [log(u/(1 — u))], we define the second-order critical value to be

i O) 1
2) - Sou,K( _
K7 (u) 21082 2410 (2(1_u>)- (4.7)

u

The derivation of this formula fok$?) (u) for the critical values of the continuous bifurcation/inexhibited
by £4K rests on the existence of the cuée= C (u), which in turn was derived numerically. However the
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accuracy of (4.7) is supported by the fact that the graph@tthveKc(z) (u) fits the critical values derived
numerically in Figures 2 and 3 of [12].

For values of u, K) lying in the regionGG_ below the graph of the cuni& = C'(u), the strict convexity
behavior ofy!, ;- no longer holds. Therefore, numerical computations weeel tis determine the behavior
of R, i for such(u, K'), showing a discontinuous bifurcation ki in this region. Specifically, there exists

a critical valueK" (u) such that the following hold.
1. Fork < KV (w), £K = {0}.
2. ForK = K" (u), there exists(u, K) > 0 such tha€®K = {0, +£3(u, K)}.
3. ForK > KV (u), there exists(u, K) > 0 such tha€®X = {+3(u, K)}.

The critical value§{£1) (u) were computed numerically by determining the valu&dbr which the number
of global minimum points of?,, x (z) changes from one at = 0 to three atz: = 0 andz = +Z(u, K),
Z(u, K) > 0.

The results of this section are summarized in the bifuroatigram for the BEG model with respect
to the microcanonical ensemble, which appears in Figura ¢hd next section we will see that Figure 9 is
a phase diagram that describes the phase transition in ttrecanonical ensemble aschanges. In order
to substantiate this, we have to transfer our analys&“df from fixed« and varyingK to an analysis of
EwK for fixed K and varyingu.
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FIG. 9: Bifurcation diagram for the BEG model with respecthiie microcanonical ensemble

V. COMPARISON OF PHASE DIAGRAMS FOR THE TWO ENSEMBLES

We end our analysis of the canonical and microcanonicalnebles by explaining what our results
imply concerning the nature of the phase transitions in ti&Bnodel. These phase transitions are defined
by varying 8 andu, the two parameters that define the ensembles. As we willtisearder of the phase
transitions is a structural property of the phase diagrathdrsense that it is the same whether we Vidrgr
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6 in the canonical ensemble ahdor « in the microcanonical ensemble while keeping the othermater
fixed.

Before doing this, we first review one of the main contribon@f the preceding two sections, which is to
analyze the bifurcation behavior of the sé&tsx and&* X of equilibrium macrostates with respect to both
the canonical and microcanonical ensembles. Figure 8 sumesdhe canonical analysis and Figure 9 the
microcanonical analysis. The figures exhibit two differeaiies ofK" called tricritical values and denoted
by KoM and K[, As we soon explain, at each of these valuesiothe corresponding ensemble
changes its behavior from a continuous, second-order ghrasstion to a discontinuous, first-order phase
transition.

For the canonical ensemble, the tricritical value in Figire given by
K&on— g2 (5.) = K (log4) ~ 1.0820,

where K2 (3) is defined in (3.19). With respect to the microcanonical eride, the tricritical value
KMo s the value of K at which the curvedd = C/(u) and K\ (u) shown in Figure 9 intersect. From
the numerical calculation of the cun/é = C(u) we obtain the following approximation for the tricritical

value Kmiere:

KMie 1~ 1.0813.

These values oK S3"°"and K[ agree with the values derived in [1] via a local analysis amcherical
computations.

We first illustrate how our analysis &f; i in Theorems 3.1 and 3.2 for fixeéiand varyingK yields
a continuous, second-order phase transition and a discmuts, first-order phase transition with respect to
the canonical ensemble. These phase transitions are démieded K and varyings, the thermodynamic
parameter that defines the ensemble. In order to study ttse ptemsition, we must therefore transform the
analysis of¢; i for fixed 5 and varyingK to an analysis of the same set for fix&dand varying3. After
we consider the microcanonical phase transition in an goakkway, we will focus on the region

K0 ~ 1.0813 < K < 1.0820 ~ K"

As we will point out, the fact that foK in this region the two ensembles exhibit different phasesitan
behavior — discontinuous for the canonical and continuoughfe microcanonical — is closely related to
the phenomenon of ensemble nonequivalence in the model.

We begin with the continuous phase transition for the catar@nsemble. Figure 8 exhibits a mono-
tonically decreasing functioll’ = Kc(z)(ﬁ) for 0 < 8 < B. = log4. Inverting this function yields a
monotonically decreasing functiop = @82)( K) for K > Kgnhon = K (B.) =~ 1.0820. Consider for

fixed K > K{""and smalld > 0, values ofg e (ﬁc (K) — ¢, ﬁ ( ) + 0). Our analysis o3 k in

Theorem 3.1 shows the following.
e Forg e (ﬁéz) (K) -9, ﬁf) (K)] the model exhibits a single phagg.
e Forge (59) (K), (2)(K) + &) the model exhibits two distinct phase$ (3, K) andv— (3, K).

We claim that for fixedk” > K$"°"this is a second-order phase transition; i.e/f as (59)( K))* we

havev™ (3, K) — pg andv— (3, K) — pg. To see this, we recall from Figure 1(b) that for= (2)(K)
the graph of the linear componen/23K of FB,K( w) is tangent to the graph of the nonlinear component

cjz(w) of F r-(w) at the origin. This figure was used in Section 3.1 to analyeestiucture of the sets x
[Thm. 3.6]. Since both components E/g ) are continuous with respect th a perturbation ir? yields
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a continuous phase transitiondp x and thus inSs & A similar argument shows that each of the double

phases/* (3, K) andv~ (3, K) are continuous functions ¢f for 5 > B(E?)(K).
We now analyze the discontinuous phase transition for therdaal ensemble in a similar way. Figure

8 exhibits a monotonically decreasing functifih= Kc(l)(ﬁ) for 8 > (. = log 4. Inverting this function
yields a monotonically decreasing functigh= ﬂél)(K) for K < K§""~ 1.0820. Consider for fixed
K < K&""and smalb > 0, values ofg € ( ﬁl)(K) -0, ﬁﬁl)(K) + 0). Our analysis oE3 i in Theorem

tri
3.2 shows the following.

e Forg e (ﬁél)(K) -9, ﬁél)(K)) the model exhibits a single phagg.
e Forg = ﬁ(gl)(K) the model exhibits three distinct phages v (5, K), andv— (5, K).
e Forge (ﬂél)(K), él)(K) + &) the model exhibits two distinct phase$ (3, K) andv— (3, K).

We claim that for fixedk < K "°"this is a first-order phase transition; i.e., @s— (5§1)(K))+,
we have for each choice of sign (3, K) — yi(ﬁél)(K), K) # pg. To see this, we recall from Figure

7(a) that forg = ﬁél)(K) the graph of the linear component/23K of FA,K(UJ) intersects the graph

of the nonlinear component;(w) of I r-(w) in five places such that the signed area between the two
graphs is 0. This results in three valueswofthat are global minimum points af x; namely,w =
0,w(8, K),—w(B,K) [Thm. 3.7]. These three values of give rise to three values of = w/26K

that constitute the sefs x for 3 = 5§2) (K). Since both components @} ;-(w) are continuous with

respect tg3, a perturbation ins yields a discontinuous phase transitiorﬁmK and thuss i. A similar
argument shows that each of the double phaseg, K) andv~ (3, K) are continuous functions ¢f for
5> 8 (K).

The phase transitions for the microcanonical ensembleedfiead! for fixedK and varyingu, the ther-
modynamic parameter defining the ensemble. Thereforedier o study these phase transitions, we must
transform the analysis @ done in Section 4 for fixed and varyingK to an analysis of the same set
for fixed K and varyingu. This is carried out in a way that is similar to what we have pene for the
canonical ensemble. In particular, we find that for> KM ~ 1.0813 the BEG model with respect to
the microcanonical ensemble exhibits a continuous, seoatier phase transition and that flir < Kcr
the model exhibits a discontinuous, first-order phase itians

We now focus on values ok satisfying K < K < K& As we have just seen, for sudki

tri tri

the two ensembles exhibit different phase transition behafor K" < K the microcanonical ensem-

ble undergoes a continuous, second-order phase trangitide for X' < K2"°"the canonical ensemble
undergoes a discontinuous, first-order phase transitibis. dbservation is consistent with a numerical cal-
culation given in Figure 10 showing that for a fixed valuefofe (K0, KanoN) there exists a subset of
the microcanonical equilibrium macrostates that are radized canonically [12]. As a result, for this value
of K the two ensembles are nonequivalent at the level of equittbmacrostates.

Figures 10(a) and 10(b) exhibit, for a range of values ahd 3, the structure of the sé&X of micro-
canonical equilibrium macrostates and the&gik of canonical equilibrium macrostates far = 1.0817.
This value of K lies in the interval( KT, K% ~ (1.0813,1.0820). Each equilibrium macrostate in
EwK andé&g k is an empirical measure having the form

v =1101 + vgdo + v_10_1.

In both figures the solid and dashed curves can be taken tesemrthe componenig andv_;. The
components; andv_; in the microcanonical ensemble are functions ¢fFig. 10(a)] and in the canonical
ensemble are functions of[Fig. 10(b)]. Figures 10(a) and 10(b) were taken from [12].
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FIG. 10: Structure of (a) the sét-X and (b) the sefs  for K = 1.0817.

Comparing the two figures reveals that the ensembles argamaéent for this value of<. Specifically,
because of the discontinuous, first-order phase transititre canonical ensemble, there exists a subset of
P that is not realized by i for any 3 > 0. On the other hand, since the $8tX of microcanonical
equilibrium macrostates exhibits a continuous, secoa@fophase transition, the subset/hot realized
canonically is realized microcanonically. As a result,réhexists an inequivalence of ensembles at the
level of equilibrium macrostates. The reader is referrefL®) for a more complete analysis of ensemble
equivalence and nonequivalence for the BEG model.

VL. LIMIT THEOREMS FOR THE TOTAL SPIN WITH RESPECT TO P, g.x

In Section 3.1, we rewrote the canonical ensenthlg x in terms of the total spi$,, and thus reduced
the analysis of the Sefg,[( of canonical equilibrium macrostates to that of a Curied&dype model.
We end this paper with limit theorems for th, 5 x-distributions of appropriately scaled partial sums
Sp = 3771 wj. Sy, represents the total spin in the model. Sisten = [, y Ln(dy), the limit theorems
for S,, are also limit theorems for the empirical measukgs The new theorems follow from limit theorems
for the Curie-Weiss model proved in [9] and [10].

Recall the functiorG x defined in (3.8) as

G (2) = BKZ* — cp(2BK2), (6.1)

wherecg is defined in (3.4). Proposition 3.4 characterizes the sedwdnical equilibrium macrostatég,K
by the formula

Es.;x = {7 € IR : > minimizesGs k(2)}.

In [9] and [10], it is proved that the limits in distributiorf @ppropriately scaled partial sunt, in the
Curie-Weiss model are determined by the minimum points @raalogue ofs . As defined in [10, egn.
(1.6)], this analogue is

Ga(2) = 507 — es(52).
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Carrying out a similar analysis of the minimum points@§ x yields limit theorems for appropriately
scaled partial sums,, for the BEG model. The limit theorems for the BEG model arevptbexactly as in
the Curie-Weiss case.

The functionG i is real analytic. Hence for each global minimum point 2(6, K) € 567]{, there

exists a positive integer = r(z) such thaﬁgg(é) >0 and

2r) [~ N\ 2

GHR ()= - 2
(2r)!

G (2) =GgK(Z) + +0((z — 2)¥*1) asz — Z.
We callr(Z) the type of the minimum poini. This concept is well-defined sin€e; x is real analytic and
Z is a global minimum point.

Because the limiting distributions for the scaled partiahs depend on the type of the minimum points
Z, we now classify each of the pointséh,K by type. This is done in Theorem 6.1 f6r< g. and K > 0,
in which casef x exhibits a continuous bifurcation, and in Theorem 6.24c¢ (. andK > 0, in which
cases i exhibits a discontinuous bifurcation. The associatedt lingorems are given in Theorems 6.3 and
6.4. In all cases but one [Thm. 3.6(b)] the type of each of th@mum points is 1. When the type is 1, the
associated limit theorems are central-limit-type theaevith scaling:'/2. If £ x = {0}, thenS,,/n'/?
converges in distribution to an appropriate normal randanmble, and iég,[( consists of multiple points,
thensS,, /n'/? satisfies a conditioned central-limit-type theorem. Ondtieer hand, whed& = K2(;3), the
type of the minimum point at 0 is = 2 or » = 3 depending on whethet < . or 3 = 3.. The associated
limit theorems have non-central-limit scalings~/2", and

P, 5.5 {Sn/n'"Y?" € dz} = const exp[—const- 27| dz.
These non-classical limit theorems signal the onset of agtransition [6, Sect. V.8].
We first considepd < . = log 4. According to Theorem 3.6, in this case there exists a atitialue
1 1 1

~ 2604(0)  4Be P T 6-2)

KP(p) =

C

with the following properties.
e Fork < K?(8), &5.5 = {0}.

o Fork > k¥ (), there existg = (6, K) > 0 such thats x = {£3}.

The next theorem gives the type of each of these poinf%j;a. The type is alwayd except whenk =
6(2) (8); in this case the global minimum point@has typer = 2 if § < . and typer = 3if § = ..

Theorem 6.1.Let3 < 8. = log4 and definel{c@) (6) by (6.2). The following conclusions hold.
(@) For K < Kc(z)(ﬁ), z =0 has typer = 1.
(b) Let K = K2 (B).
(i) For 8 < B., z = 0 has typer = 2.
(i) For 8 = G., z = 0 has typer = 3.
(c)For K > KC(Q) (8) and each choice of sign,= +2(, K) has typer = 1.

Proof. (a) By (6.2), we have
G5x(0) = 28K (1 —28Kd5(0))

K
- 29k (1- T@)(m) |
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Therefore K < K? (8) implies thatG's ;-(0) > 0 and thus that = 0 has typer = 1.
(b) ForK = K (B), G% x(0) = 0. A simple calculation yields

4 2e7P(142e7P)(1 — 2P — 8eF)

Gy (0) = —(26K)' e (0) = —(26K)* (L + Py (63)

Therefore, fors < 3., G(ﬁ‘f)K(O) > 0 and forg = ., G(ﬁ‘f}((o) = 0. Computing the sixth derivative yields

G 1 (0) = 2(26K)5 /9. (6.4)

As aresultz = 0 has type 2if3 < 5. and has type 3 i = 3.

(c) To prove that the symmetric minimum pointst of G3 x each have type = 1, we employ the
results of Lemma 2.3.5 in [18]. This lemma states the exigg@md unigueness of nonzero global minimum
pointsizb = +0(8, K) of Fs x(w) = w? /48K — cg(w); @ is a global minimum point oFgK if and
only if Z = w /28K is a global minimum point of7 3 . Lemma 2.3.5 in [18] also states tH@ZK ) > 0.
SinceFy - (w) > 0if and only if G x(2) > 0, the symmetry ofzs  allows us to conclude that for each
choice 07f signtZ has typer = 1. Thvis completes the proo

We next classify by type the points t?/yK for § > B. and K > 0. According to Theorem 3.7, there
exists a critical valueKc(l)(ﬁ) with the following properties.

o Fork < K(8), &5.5 = {0}.
o ForK = K!V(8), there exists = (8, K) > 0 such thas s = {0, £3}.

e ForkK > Kél)(ﬂ), gg,K = {+z}.

The next theorem shows that the type of each of these poidls jinis 1.

Theorem 6.2.Let3 > 3. and K > 0. The points infﬂK all have typer = 1.

Proof. We first consider whe#i i contains 0, in which casi < Kc(l)(ﬂ). Define Ky = 1/283¢3(0). It
is proved in Lemma 2.3.15 in [18] that for > 3. we haveKc(l)(ﬁ) < K». Since

G (0) = 2BK(1 — 26Kc4(0)) (6.5)
K
= 26K (1 B E)

it follows that whenever < Kc(l)(ﬂ), 1 > K/K> and thusG7 ;(0) > 0. We conclude that the minimum
point of G5 i atz = 0 has typer = 1, as claimed.

ForK > KM(9), Es.x also contains the symmetric, nonzero minimum poihgsof G5 x. We prove
that each of these points has type= 1, employing the results of Lemma 2.3.11 in [18]. This lemma
states the existence and uniqueness of nonzero global mmipoints+w = +w (3, K) of the function
Fj ic(w) = w? /48K — cg(w); w is a global minimum point of 5 x if and only if Z = @ /28K is a global
minimum point ofG s k. Furthermore, Lemma 2.3.11 states thgt, (@) > 0. SinceFj ,(w) > 0 if and
only if G x(2) > 0, the symmetry of73 x allows us to conclude that for each choice of sighhas type
r=1. Thivs completes the proo

We now state the limit theorems for th, g x-distributions for appropriately scaled partial suf)s
The first, Theorem 6.3, states limit theorems that are vahdv/z x has a unique global minimum point
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atz = 0. This is the case fof < 3., K < K (3) [Thm. 3.6(a)] and for3 > 8., K < K(8) [Thm.
3.7(a)]. The second, Theorem 6.4, states conditioned imaitrems that are valid whe®s - has multiple
global minimum points. Because Theorems 6.3 and 6.4 are dhiatecapplications of Theorems 2.1 of [9]
and 2.4 of [10], respectively, we state them here withoudpro

In Theorem 6.3f .= denotes the density of ak(0, o) random variable with

. 2K c(0)

Gj,x(0)
When the type of the minimum point @is » = 1, 02 > 0 because in this caié’ﬁ’,K(O) > 0 and in general
cg(o) > 0. If fis a nonnegative, integrable function @) then forr = 1, 2, or 3 we write

2 (6.6)

Pn,@K{Sn/nl_l/% €dr} = f(x)dx
to mean that as — oo the P, g x-distributions ofS,,/n'~'/2" converge weakly to a distribution with

density proportional tof. Whenr = 1, f = f; 2, and the limit is a central-limit-type theorem with

scalingn'/2. Whenr = 2 or 3, the limits involve the nonclassical scaling’* or n®/¢, respectively, and
the P, 3 k-distributions of the scaled random variables convergekiyea a distribution having a density
proportional teexp[—const- z*] or exp[—const- 29].

Theorem 6.3. Suppose th&fg,[( = {0} and letr be the type of the point = 0 as given in Theoren®.1
and6.2 With o2 the positive quantity defined (6.6), asn — oo

S, foo2(z)dx forr =1
P, {7” € dx} e
K pi=172r eXp(—G(;’Q(O)xZ’"/(%)!) dx forr=2orr=3.

Whenr = 2 [K = K7(8), 8 < 5], G4 (0) is given by(6.3), and when = 3 [K = K (8), 8 = 4],
Gy (0) = 2(28K)° /9.

Our last theorem states conditioned limit theorems thatvalid whenG x has multiple minimum
points. This holds in three cases: (1) wher< 5. and K > Kéz) (6), in which case the minimum points
are+3(8, K) with (3, K) > 0 [Thm. 3.6(b)]; (2) whend = 3, and K = K" (), in which case the
minimum points aré, +3(8, K) with 2(3, K) > 0 [Thm. 3.7(b)]; (3) wher = 8, andK > K" (3), in
which case the minimum points ate (3, K') with Z(3, K) > 0[Thm. 3.7(c)]. In each case in whickg x
has multiple minimum points, Theorems 6.1and 6.2 statesaththe minimum points have type = 1.
Hence, if we denote the minimum points by for j = 1,2 or for j = 1,2, 3, then for eachj we have
G x(2;) > 0. Defining

2 2BK c3(2BK z;)
1T GG

(6.7)

we see thabf- > 0.

Theorem 6.4. Suppose thaf‘@K ={21,...,zm} form =2 or 3. Foreachj = 1,...,m we letf, 2 be
]

the density of anV (0, sz-) random variable, Wheref— is the positive quantity defined {6.7). Then there
existsA = A(z;) > 0 such that for any: € (0, A)

Sy —nz; S
Pnﬁ,K{nnTng € dx 7" €[z —a, 2 +a]} = fo,0,;(x)dz asn — oo.

This completes our study of the limits for th#&, s x-distributions of appropriately scaled partial sums
Sp = 3772wy
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