32 research outputs found

    Vector Mesons and Dence Skyrmion Matter

    Get PDF
    In our continuing effort to understand hadronic matter at high density, we have developed a unified field theoretic formalism for dense skyrmion matter using a single Lagrangian to describe simultaneously both matter and meson fluctuations and studied in-medium properties of hadrons. Dropping the quartic Skyrme term, we incorporate into our previous Lagrangian the vector mesons rho and omega in a form which is consistent with the symmetries of QCD. The results that we have obtained, reported here, expose a hitherto unsuspected puzzle associated with the role the omega meson plays at short distance. Since the omega meson couples to baryon density, it leads to a pseudo-gap scenario for the chiral symmetry phase transition, which is at variance with standard scenario of QCD at the phase transition. We find that in the presence of the omega mesons, the scale-anomaly dilaton field is prevented from developing a vanishing vacuum expectation value at the chiral restoration, as a consequence of which the in-medium pion decay constant does not vanish. This seems to indicate that the omega degree of freedom obstructs the vector manifestation which is considered to be a generic feature of effective field theories matched to QCD.Comment: 16 pages, 5 figures, references for Sec.5 adde

    A Hybrid Least Squares and Principal Component Analysis Algorithm for Raman Spectroscopy

    Get PDF
    Raman spectroscopy is a powerful technique for detecting and quantifying analytes in chemical mixtures. A critical part of Raman spectroscopy is the use of a computer algorithm to analyze the measured Raman spectra. The most commonly used algorithm is the classical least squares method, which is popular due to its speed and ease of implementation. However, it is sensitive to inaccuracies or variations in the reference spectra of the analytes (compounds of interest) and the background. Many algorithms, primarily multivariate calibration methods, have been proposed that increase robustness to such variations. In this study, we propose a novel method that improves robustness even further by explicitly modeling variations in both the background and analyte signals. More specifically, it extends the classical least squares model by allowing the declared reference spectra to vary in accordance with the principal components obtained from training sets of spectra measured in prior characterization experiments. The amount of variation allowed is constrained by the eigenvalues of this principal component analysis. We compare the novel algorithm to the least squares method with a low-order polynomial residual model, as well as a state-of-the-art hybrid linear analysis method. The latter is a multivariate calibration method designed specifically to improve robustness to background variability in cases where training spectra of the background, as well as the mean spectrum of the analyte, are available. We demonstrate the novel algorithm’s superior performance by comparing quantitative error metrics generated by each method. The experiments consider both simulated data and experimental data acquired from in vitro solutions of Raman-enhanced gold-silica nanoparticles

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Simulation results.

    No full text
    <p>(a) Example of fitted spectra, (b) corresponding residuals, (c) histograms of Durbin-Watson statistics produced by each method, (d) estimated concentrations, and (e-f) mean and standard deviation of fractional errors generated by the LS-3P, HLA and HLP algorithms.</p

    Excised pig colon backgrounds, mean, and first two principal components.

    No full text
    <p>Excised pig colon backgrounds, mean, and first two principal components.</p

    Acquired signals, mean signal, and the first two principal components of the S440 nanoparticle (left) and the paraffin background (right).

    No full text
    <p>Acquired signals, mean signal, and the first two principal components of the S440 nanoparticle (left) and the paraffin background (right).</p

    Color background results.

    No full text
    <p>(a) Phantom, (b-d) log2 of S440 concentrations by LS-3P, HLA, and HLP, (e-f) example fitted spectra and residuals by LS-3P, HLA and HLP, (g) histogram of the Durbin-Watson statistic for all pixels, and (h-i) quantification of concentration estimation accuracy. ‘True’ in (h) plots the theoretical linear relationship between the estimated and true concentrations of S440. The concentration estimate by LS-3P for the lowest true concentration was negative and hence not shown in the logarithmic plot in (h).</p

    Background signals of the printed colors: mean and first two principal components.

    No full text
    <p>Background signals of the printed colors: mean and first two principal components.</p
    corecore