45,130 research outputs found

    Spacecraft active thermal control technology status

    Get PDF
    Four advanced space radiator concepts that were pursued in an integrated effort to develop multi-mission-use and low cost heat rejection systems which can overcome the limitations of current radiator systems are briefly discussed and described. Also, in order to establish a firm background to compare the advanced space radiator concepts, the Orbiter active thermal control system is also briefly described

    Inflation induced by Gravitino Condensation in Supergravity

    Full text link
    We discuss the emergence of an inflationary phase in supergravity with the super-Higgs effect due to dynamical spontaneous breaking of supersymmetry, in which the role of the inflaton is played by the gravitino condensate. Realistic models compatible with the Planck satellite CMB data are found in conformal supergravity scenarios with dynamical gravitino masses that are small compared to the Planck mass, as could be induced by a non-trivial vacuum expectation value of the dilaton superfield of appropriate magnitude.Comment: 13 pages, Revtex, 11 pdf figures, references added on role of gravitino torsion condensates in parallelising space-time manifolds, hierarchy of scales involved made explicit, no effects on conclusions. Version to appear in Physical Review

    High-Energy QCD as a Topological Field Theory

    Get PDF
    We propose an identification of the conformal field theory underlying Lipatov's spin-chain model of high-energy scattering in perturbative QCD. It is a twisted N=2 supersymmetric topological field theory, which arises as the limiting case of the SL(2,R)/U(1) non-linear sigma model that also plays a role in describing the Quantum Hall effect and black holes in string theory. The doubly-infinite set of non-trivial integrals of motion of the high-energy spin-chain model displayed by Faddeev and Korchemsky are identified as the Cartan subalgebra of a W_{\infty} \otimes W_{\infty} bosonic sub-symmetry possessed by this topological theory. The renormalization group and an analysis of instanton perturbations yield some understanding why this particular topological spin-chain model emerges in the high-energy limit, and provide a new estimate of the asymptotic behaviour of multi-Reggeized-gluon exchange.Comment: 24 pages LATEX, one eps figure incorporate

    Hadron Spectroscopy (theory): Diquarks, Tetraquarks, Pentaquarks and no quarks

    Full text link
    States beyond those expected in the simple constituent quark model are now emerging. I focus on the scalar glueball and its mixing with states in the qqˉq\bar{q} nonet, and also on correlations in Strong QCD that may form diquarks and seed qqqˉqˉqq\bar{q}\bar{q} states. Some models of the pentaquark candidate Θ(1540)\Theta(1540) are critically discussed.Comment: Plenary talk at ICHEP0

    Quantum Decoherence in a D-Foam Background

    Get PDF
    Within the general framework of Liouville string theory, we construct a model for quantum D-brane fluctuations in the space-time background through which light closed-string states propagate. The model is based on monopole and vortex defects on the world sheet, which have been discussed previously in a treatment of 1+1-dimensional black-hole fluctuations in the space-time background, and makes use of a T-duality transformation to relate formulations with Neumann and Dirichlet boundary conditions. In accordance with previous general arguments, we derive an open quantum-mechanical description of this D-brane foam which embodies momentum and energy conservation and small mean energy fluctuations. Quantum decoherence effects appear at a rate consistent with previous estimates.Comment: 16 pages, Latex, two eps figures include

    A supersymmetric D-brane Model of Space-Time Foam

    Full text link
    We present a supersymmetric model of space-time foam with two stacks of eight D8-branes with equal string tensions, separated by a single bulk dimension containing D0-brane particles that represent quantum fluctuations in the space-time foam. The ground state configuration with static D-branes has zero vacuum energy. However, gravitons and other closed-string states propagating through the bulk may interact with the D0-particles, causing them to recoil and the vacuum energy to become non zero. This provides a possible origin of dark energy. Recoil also distorts the background metric felt by energetic massless string states, which travel at less than the usual (low-energy) velocity of light. On the other hand, the propagation of chiral matter anchored on the D8 branes is not affected by such space-time foam effects.Comment: 33 pages, latex, five figure

    Prospects for Discovering Supersymmetry at the LHC

    Full text link
    Supersymmetry is one of the best-motivated candidates for physics beyond the Standard Model that might be discovered at the LHC. There are many reasons to expect that it may appear at the TeV scale, in particular because it provides a natural cold dark matter candidate. The apparent discrepancy between the experimental measurement of g_mu - 2 and the Standard model value calculated using low-energy e+ e- data favours relatively light sparticles accessible to the LHC. A global likelihood analysis including this, other electroweak precision observables and B-decay observables suggests that the LHC might be able to discover supersymmetry with 1/fb or less of integrated luminosity. The LHC should be able to discover supersymmetry via the classic missing-energy signature, or in alternative phenomenological scenarios. The prospects for discovering supersymmetry at the LHC look very good.Comment: 8 pages, 11 figure

    Gradient Flow in Logarithmic Conformal Field Theory

    Get PDF
    We establish conditions under which the worldsheet beta-functions of logarithmic conformal field theories can be derived as the gradient of some scalar function on the moduli space of running coupling constants. We derive a renormalization group invariant version of this function and relate it to the usual Zamolodchikov C-function expressed in terms of correlation functions of the worldsheet energy-momentum tensor. The results are applied to the example of D-brane recoil in string theory.Comment: 12 pages LaTeX; references updated, one added; to be published in Physics Letters
    corecore