1,472 research outputs found

    The Dynamical Distinction between Elliptical and Lenticular Galaxies in Distant Clusters: Further Evidence for the Recent Origin of S0 Galaxies

    Get PDF
    We examine resolved spectroscopic data obtained with the Keck II telescope for 44 spheroidal galaxies in the fields of two rich clusters, Cl0024+16 (z=0.40) and MS0451-03 (z=0.54), and contrast this with similar data for 23 galaxies within the redshift interval 0.3<z<0.65 in the GOODS northern field. For each galaxy we examine the case for systemic rotation, derive central stellar velocity dispersions sigma and photometric ellipticities, epsilon. Using morphological classifications obtained via Hubble Space Telescope imaging as the basis, we explore the utility of our kinematic quantities in distinguishing between pressure-supported ellipticals and rotationally-supported lenticulars (S0s). We demonstrate the reliability of using the v/(1-epsilon) vs sigma and v/sigma vs epsilon distributions as discriminators, finding that the two criteria correctly identify 63%+-3% and 80%+-2% of S0s at z~0.5, respectively, along with 76%+8-3% and 79%+-2% of ellipticals. We test these diagnostics using equivalent local data in the Coma cluster, and find that the diagnostics are similarly accurate at z=0. Our measured accuracies are comparable to the accuracy of visual classification of morphologies, but avoid the band-shifting and surface brightness effects that hinder visual classification at high redshifts. As an example application of our kinematic discriminators, we then examine the morphology-density relation for elliptical and S0 galaxies separately at z~0.5. We confirm, from kinematic data alone, the recent growth of rotationally-supported spheroidals. We discuss the feasibility of extending the method to a more comprehensive study of cluster and field galaxies to z~1, in order to verify in detail the recent density-dependent growth of S0 galaxies.Comment: 7 pages, 4 figures, updated with version accepted to Ap

    Caltech Faint Galaxy Redshift Survey VII: Data Analysis Techniques and Redshifts in the Field J0053+1234

    Get PDF
    We present the techniques used to determine redshifts and to characterize the spectra of objects in the Caltech Faint Galaxy Redshift Survey in terms of spectral classes and redshift quality classes. These are then applied to spectra from an investigation of a complete sample of objects with Ks<20K_s<20 mag in a 2 by 7.3 arcmin^2 field at J005325+1234. Redshifts were successfully obtained for 163 of the 195 objects in the sample; these redshifts lie in the range [0.173, 1.44] and have a median of 0.58 (excluding 24 Galactic stars). The sample includes two broad lined AGNs and one QSO.Comment: 20 pages, Latex, 3 figures, accepted for publication in the ApJ Supplement

    Synthetic and Enhanced Vision Systems for NextGen (SEVS) Simulation and Flight Test Performance Evaluation

    Get PDF
    The Synthetic and Enhanced Vision Systems for NextGen (SEVS) simulation and flight tests are jointly sponsored by NASA's Aviation Safety Program, Vehicle Systems Safety Technology project and the Federal Aviation Administration (FAA). The flight tests were conducted by a team of Honeywell, Gulfstream Aerospace Corporation and NASA personnel with the goal of obtaining pilot-in-the-loop test data for flight validation, verification, and demonstration of selected SEVS operational and system-level performance capabilities. Nine test flights (38 flight hours) were conducted over the summer and fall of 2011. The evaluations were flown in Gulfstream.s G450 flight test aircraft outfitted with the SEVS technology under very low visibility instrument meteorological conditions. Evaluation pilots flew 108 approaches in low visibility weather conditions (600 ft to 2400 ft visibility) into various airports from Louisiana to Maine. In-situ flight performance and subjective workload and acceptability data were collected in collaboration with ground simulation studies at LaRC.s Research Flight Deck simulator

    The Einstein static universe in Loop Quantum Cosmology

    Get PDF
    Loop Quantum Cosmology strongly modifies the high-energy dynamics of Friedman-Robertson-Walker models and removes the big-bang singularity. We investigate how LQC corrections affect the stability properties of the Einstein static universe. In General Relativity, the Einstein static model with positive cosmological constant Lambda is unstable to homogeneous perturbations. We show that LQC modifications can lead to a centre of stability for a large enough positive value of Lambda.Comment: 12 pages, 7 figures; v2: minor changes to match published version in Classical and Quantum Gravit

    Frugal Clay Press for Nicaragua: Design of a Human-Powered Clay Brick Press for Rural Application

    Get PDF
    This team was connected to a brick-making social entrepreneurship in Ciudad Darío, Nicaragua. Travel to Nicaragua in March of 2018 determined that the entrepreneurship wanted a manual brick press to increase the mechanical properties of bricks while decreasing the time needed for the bricks to dry before being baked. Fabrication of a semi-functional beta prototype was completed in May of 2018. Prototype operational tests showed that one cycle of brick compression and retrieval took roughly 3.5 minutes to produce a single double-sized brick. Water absorptivity tests determined that compressed bricks of red art clay experienced a percent absorptivity of 20.5%, with non-compressed bricks formed in Nicaragua having an absorptivity of 35.0%. Finally, the ultimate compressive strength of bricks produced using the prototype averaged to 1,640 psi, as compared to 822 psi of the Nicaraguan brick. Insufficient data was collected to confirm the safety and effectiveness of the design. Several mechanical errors in clay compression and subsystem interferences merit further redesign. Recommendations for design iterations are included for future design teams to finalize and deploy the device

    Observational Evidence for the Co-evolution of Galaxy Mergers, Quasars, and the Blue/Red Galaxy Transition

    Get PDF
    We compile a number of observations to estimate the time-averaged rate of formation or buildup of red sequence galaxies, as a function of mass and redshift. Comparing this with the mass functions of mergers and quasar hosts, and independently comparing their clustering properties as a function of redshift, we find that these populations trace the same mass distribution, with similar evolution, at redshifts 0<z<~1.5. Knowing one of the quasar, merger, or elliptical mass/luminosity functions, it is possible to predict the others. Allowing for greater model dependence, we compare the rate of early-type buildup with the implied merger and quasar triggering rates as a function of mass and redshift and find agreement. Over this redshift range, observed merger fractions can account for the entire bright quasar luminosity function and buildup of the red sequence at all but the highest masses at low redshift (>~10^11 M_solar at z<~0.3) where 'dry' mergers appear to dominate. This supports a necessary prediction of theories where mergers between gas-rich galaxies produce ellipticals with an associated phase of quasar activity, after which the remnant becomes red. These populations trace a similar characteristic transition mass, possibly reflecting the mass above which the elliptical population is mostly (>~50%) assembled at a given redshift, which increases with redshift over the observed range in a manner consistent with suggestions that cosmic downsizing may apply to red galaxy assembly as well as star formation. These mass distributions as a function of redshift do not uniformly trace the all/red/blue galaxy population, ruling out models in which quasar activity is generically associated with star formation or is long lived in 'old' systems.Comment: 24 pages, 17 figures. Accepted to ApJ. Substantially revised and expanded to match published versio

    Multivariate discrimination and the Higgs + W/Z search

    Get PDF
    A systematic method for optimizing multivariate discriminants is developed and applied to the important example of a light Higgs boson search at the Tevatron and the LHC. The Significance Improvement Characteristic (SIC), defined as the signal efficiency of a cut or multivariate discriminant divided by the square root of the background efficiency, is shown to be an extremely powerful visualization tool. SIC curves demonstrate numerical instabilities in the multivariate discriminants, show convergence as the number of variables is increased, and display the sensitivity to the optimal cut values. For our application, we concentrate on Higgs boson production in association with a W or Z boson with H -> bb and compare to the irreducible standard model background, Z/W + bb. We explore thousands of experimentally motivated, physically motivated, and unmotivated single variable discriminants. Along with the standard kinematic variables, a number of new ones, such as twist, are described which should have applicability to many processes. We find that some single variables, such as the pull angle, are weak discriminants, but when combined with others they provide important marginal improvement. We also find that multiple Higgs boson-candidate mass measures, such as from mild and aggressively trimmed jets, when combined may provide additional discriminating power. Comparing the significance improvement from our variables to those used in recent CDF and DZero searches, we find that a 10-20% improvement in significance against Z/W + bb is possible. Our analysis also suggests that the H + W/Z channel with H -> bb is also viable at the LHC, without requiring a hard cut on the W/Z transverse momentum.Comment: 41 pages, 5 tables, 29 figure

    CNN Architectures for Large-Scale Audio Classification

    Full text link
    Convolutional Neural Networks (CNNs) have proven very effective in image classification and show promise for audio. We use various CNN architectures to classify the soundtracks of a dataset of 70M training videos (5.24 million hours) with 30,871 video-level labels. We examine fully connected Deep Neural Networks (DNNs), AlexNet [1], VGG [2], Inception [3], and ResNet [4]. We investigate varying the size of both training set and label vocabulary, finding that analogs of the CNNs used in image classification do well on our audio classification task, and larger training and label sets help up to a point. A model using embeddings from these classifiers does much better than raw features on the Audio Set [5] Acoustic Event Detection (AED) classification task.Comment: Accepted for publication at ICASSP 2017 Changes: Added definitions of mAP, AUC, and d-prime. Updated mAP/AUC/d-prime numbers for Audio Set based on changes of latest Audio Set revision. Changed wording to fit 4 page limit with new addition
    corecore