20,289 research outputs found

    The generalized gradient approximation kernel in time-dependent density functional theory

    Full text link
    A complete understanding of a material requires both knowledge of the excited states as well as of the ground state. In particular, the low energy excitations are of utmost importance while studying the electronic, magnetic, dynamical, and thermodynamical properties of the material. Time-Dependent Density Functional Theory (TDDFT), within the linear regime, is a successful \textit{ab-initio} method to access the electronic charge and spin excitations. However, it requires an approximation to the exchange-correlation (XC) kernel which encapsulates the effect of electron-electron interactions in the many-body system. In this work we derive and implement the spin-polarized XC kernel for semi-local approximations such as the adiabatic Generalized Gradient Approximation (AGGA). This kernel has a quadratic dependence on the wavevector, {\bf q}, of the perturbation, however the impact of this on the electron energy loss spectra (EELS) is small. Although the GGA functional is good in predicting structural properties, it generality overestimates the exchange spin-splitting. This leads to higher magnon energies, as compared to both ALDA and experiment. In addition, interaction with the Stoner spin-flip continuum is enhanced by AGGA, which strongly suppresses the intensity of spin-waves.Comment: 11 pages, 7 figure

    Universal Features of Terahertz Absorption in Disordered Materials

    Full text link
    Using an analytical theory, experimental terahertz time-domain spectroscopy data and numerical evidence, we demonstrate that the frequency dependence of the absorption coupling coefficient between far-infrared photons and atomic vibrations in disordered materials has the universal functional form, C(omega) = A + B*omega^2, where the material-specific constants A and B are related to the distributions of fluctuating charges obeying global and local charge neutrality, respectively.Comment: 5 pages, 3 fig

    Living with the user: Design drama for dementia care through responsive scripted experiences in the home

    Get PDF
    Participation in forms of drama and narrative can provoke empathy and creativity in user-centred design processes. In this paper, we expand upon existing methods to explore the potential for responsive scripted experiences that are delivered through the combination of sensors and output devices placed in a home. The approach is being developed in the context of Dementia care, where the capacity for rich user participation in design activities is limited. In this case, a system can act as a proxy for a person with Dementia, allowing designers to gain experiences and insight as to what it is like to provide care for, and live with, this person. We describe the rationale behind the approach, a prototype system architecture, and our current work to explore the creation of scripted experiences for design, played out though UbiComp technologies.This research is funded by the Arts and Humanities Research Council UK, (AH/K00266X/1) and Horizon Digital Economy Research (RCUK grant EP/G065802/1)

    Using cultural probes to inform the design of assistive technologies

    Get PDF
    This paper discusses the practical implications of applying cultural probes to drive the design of assistive technologies. Specifically we describe a study in which a probe was deployed with home-based carers of people with dementia in order to capture critical data and gain insights of integrating the technologies into this sensitive and socially complex design space. To represent and utilise the insights gained from the cultural probes, we created narratives based on the probe data to enhance the design of assistive technologies.This work was supported by the Arts and Humanities Research Council (AH/K00266X/1) and RCUK through the Horizon Digital Economy Research grant (EP/G065802/1)

    Interpretation of F106B and CV580 in-flight lightning data and form factor determination

    Get PDF
    Two topics of in-flight aircraft/lightning interaction are addressed. The first is the analysis of measured data from the NASA F106B Thunderstorm Research Aircraft and the CV580 research program run by the FAA and Wright-Patterson Air Force Base. The CV580 data was investigated in a mostly qualitative sense, while the F106B data was subjected to both statistical and quantitative analysis using linear triggered lightning finite difference models. The second main topic is the analysis of field mill data and the calibration of the field mill systems. The calibration of the F106B field mill system was investigated using an improved finite difference model of the aircraft having a spatial resolution of one-quarter meter. The calibration was applied to measured field mill data acquired during the 1985 thunderstorm season. The experimental determination of form factors useful for field mill calibration was also investigated both experimentally and analytically. The experimental effort involved the use of conducting scale models and an electrolytic tank. An analytic technique was developed to aid in the understanding of the experimental results

    Structural characteristics of positionally-disordered lattices: relation to the first sharp diffraction peak in glasses

    Full text link
    Positional disorder has been introduced into the atomic structure of certain crystalline lattices, and the orientationally-averaged structure factor S(k) and pair-correlation function g(r) of these disordered lattices have been studied. Analytical expressions for S(k) and g(r) for Gaussian positional disorder in 2D and 3D are confirmed with precise numerical simulations. These analytic results also have a bearing on the unsolved Gauss circle problem in mathematics. As the positional disorder increases, high-k peaks in S(k) are destroyed first, eventually leaving a single peak, that with the lowest-k value. The pair-correlation function for lattices with such high levels of positional disorder exhibits damped oscillations, with a period equal to the separation between the furthest-separated (lowest-k) lattice planes. The last surviving peak in S(k) is, for example for silicon and silica, at a wavevector nearly identical to that of the experimentally-observed first sharp diffraction peak (FSDP) in the amorphous phases of those materials. Thus, for these amorphous materials at least, the FSDP can be regarded as arising from scattering from atomic configurations equivalent to the single family of positionally-disordered local Bragg planes having the furthest separation.Comment: v2: changes in response to referees' comments: Figure 2 made more readable, improved discussion of height of peaks in S(k), other minor changes 4 pages, 3 figures, submitted to Physical Review

    The influence of the long-lived quantum Hall potential on the characteristics of quantum devices

    Full text link
    Novel hysteretic effects are reported in magneto-transport experiments on lateral quantum devices. The effects are characterized by two vastly different relaxation times (minutes and days). It is shown that the observed phenomena are related to long-lived eddy currents. This is confirmed by torsion-balance magnetometry measurements of the same 2-dimensional electron gas (2DEG) material. These observations show that the induced quantum Hall potential at the edges of the 2DEG reservoirs influences transport through the devices, and have important consequences for the magneto-transport of all lateral quantum devices.Comment: 5 pages, 4 figure

    Competing spin transfer and dissipation at Co/Cu(001) interfaces on femtosecond timescales

    Full text link
    By combining interface-sensitive non-linear magneto-optical experiments with femtosecond time resolution and ab-initio time-dependent density functional theory, we show that optically excited spin dynamics at Co/Cu(001) interfaces proceeds via spin-dependent charge transfer and backtransfer between Co and Cu. This ultrafast spin transfer competes with dissipation of spin angular momentum mediated by spin-orbit coupling already on sub 100 fs timescales. We thereby identify the fundamental microscopic processes during laser-induced spin transfer at a model interface for technologically relevant ferromagnetic heterostructures.Comment: 5 pages, 4 figure
    corecore