4,083 research outputs found

    Immigration and early life stages recruitment of the European flounder (Platichthys flesus) to an estuarine nursery: the influence of environmental factors

    Get PDF
    Connectivity between coastal spawning grounds and estuarine nurseries is a critical step in the life cycle of many fish species. Larval immigration and transport-associated physical–biological processes are determinants of recruitment success to nursery areas. The recruitment of the European flounder, Platichthys flesus, to estuarine nurseries located at the southern edge of the species distribution range, has been usually investigated during its juvenile stages, while estuarine recruitment during the earlier planktonic life stage remains largely unstudied. The present study investigated the patterns of flounder larval recruitment and the influence of environmental factors on the immigration of the early life stages to the Lima estuary (NW Portugal), integrating data on fish larvae and post-settlement individuals (< 50 mm length), collected over 7 years. Late-stage larvae arrived at the estuary between February and July and peak abundances were observed in April. Post-settlement individuals (< 50 mm) occurred later between April and October, whereas newly-settled ones (< 20 mm) were found only in May and June. Variables associated with the spawning, survival and growth of larvae in the ocean (sea surface temperature, chlorophyll a and inland hydrological variables) were the major drivers of flounder occurrence in the estuarine nursery. Although the adjacent coastal area is characterized by a current system with strong seasonality and mesoscale variability, we did not identify any influence of variables related with physical processes (currents and upwelling) on the occurrence of early life stages in the estuary. A wider knowledge on the influence of the coastal circulation variability and its associated effects upon ocean-estuarine connectivity is required to improve our understanding of the population dynamics of marine spawning fish that use estuarine nurseries

    Characterizing energy flow in kelp forest food webs: a geochemical review and call for additional research

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Elliott Smith, E. A., & Fox, M. D. Characterizing energy flow in kelp forest food webs: a geochemical review and call for additional research. Ecography. 2021,https://doi.org/10.1111/ecog.05566.Kelp forests are highly productive coastal habitats that serve as biodiversity hotspots and provide valuable ecosystem services. Despite being one the largest marine biomes, kelp forests have been drastically understudied relative to other marine systems. Notably, while the role of kelp as habitat-forming, or ‘foundation species', is well-documented, a comprehensive understanding of kelp forest food web structure is lacking, particularly regarding the importance of kelp-derived energy/nutrients to consumers. Here, we provide a biogeographic perspective on the energetic underpinning of kelp forests based on published literature. We targeted studies which used geochemical proxies – stable isotope analysis – to examine the transfer of carbon from kelp to local consumers. These studies (n = 94) were geographically skewed, with > 40% from Northern European Seas and Temperate Northeast Pacific. Quantitative estimates for the percentage of kelp energy (or kelp + macroalgae if sources were pooled) incorporated by local consumers came from 43 publications, which studied 141 species and 35 broader taxonomic groups. We examined these data for trends among functional groups and across upwelling regimes. No patterns are evident at present, perhaps due to the paucity or variability of available data. However, energetic subsides from kelps clearly support a wide range of diverse taxa around the globe. We also characterized biogeographic patterns in δ13C values of kelps and particulate organic matter (POM, a phytoplankton proxy), to evaluate potential limitations of stable isotope analysis in disentangling the relative contributions of pelagic versus benthic resources to coastal food webs. Globally, kelps and POM differed by > 4.5‰, but there was substantial variation among regions and kelp species. Accordingly, we discuss advances in stable isotope techniques which are facilitating more precise analysis of these complex energetic pathways. We end by proposing four main avenues of critical future research that will shed light on the resilience of these communities to global change.This material is based upon work supported by the National Science Foundation under Grant no. (NSF 1907163) issued to EES. MF was supported by a Woods Hole Oceanographic Institution Postdoctoral Scholarship

    Response normalization and blur adaptation:data and multi-scale model

    Get PDF
    Adapting to blurred or sharpened images alters perceived blur of a focused image (M. A. Webster, M. A. Georgeson, & S. M. Webster, 2002). We asked whether blur adaptation results in (a) renormalization of perceived focus or (b) a repulsion aftereffect. Images were checkerboards or 2-D Gaussian noise, whose amplitude spectra had (log-log) slopes from -2 (strongly blurred) to 0 (strongly sharpened). Observers adjusted the spectral slope of a comparison image to match different test slopes after adaptation to blurred or sharpened images. Results did not show repulsion effects but were consistent with some renormalization. Test blur levels at and near a blurred or sharpened adaptation level were matched by more focused slopes (closer to 1/f) but with little or no change in appearance after adaptation to focused (1/f) images. A model of contrast adaptation and blur coding by multiple-scale spatial filters predicts these blur aftereffects and those of Webster et al. (2002). A key proposal is that observers are pre-adapted to natural spectra, and blurred or sharpened spectra induce changes in the state of adaptation. The model illustrates how norms might be encoded and recalibrated in the visual system even when they are represented only implicitly by the distribution of responses across multiple channels

    Prospective Memory in the Red Zone: Cognitive Control and Capacity Sharing in a Complex, Multi-Stimulus Task

    Get PDF
    © 2019 American Psychological Association. Remembering to perform a planned action upon encountering a future event requires event-based Prospective Memory (PM). PM is required in many human factors settings in which operators must process a great deal of complex, uncertain information from an interface. We study event-based PM in such an environment. Our task, which previous research has found is very demanding (Palada, Neal, Tay, & Heathcote, 2018), requires monitoring ships as they cross the ocean on a display. We applied the Prospective Memory Decision Control Model (Strickland, Loft, Remington, & Heathcote, 2018) to understand the cognitive mechanisms that underlie PM performance in such a demanding environment. We found evidence of capacity sharing between monitoring for PM items and performing the ongoing surveillance task, whereas studies of PM in simpler paradigms have not (e.g., Strickland et al., 2018). We also found that participants applied proactive and reactive control (Braver, 2012) to adapt to the demanding task environment. Our findings illustrate the value of human factors simulations to study capacity sharing between competing task processes. They also illustrate the value of cognitive models to illuminate the processes underlying adaptive behavior in complex environments

    Habitat loss and gain: Influence on habitat attractiveness for estuarine fish communities

    Get PDF
    © 2017 Elsevier Ltd Habitat structure and complexity influence the structuring and functioning of fish communities. Habitat changes are one of the main pressures affecting estuarine systems worldwide, yet the degree and rate of change and its impact on fish communities is still poorly understood. In order to quantify historical modifications in habitat structure, an ecohydrological classification system using physiotopes, i.e. units with homogenous abiotic characteristics, was developed for the lower Lima estuary (NW Portugal). Field data, aerial imagery, historical maps and interpolation methods were used to map input variables, including bathymetry, substratum (hard/soft), sediment composition, hydrodynamics (current velocity) and vegetation coverage. Physiotopes were then mapped for the years of 1933 and 2013 and the areas lost and gained over the 80 years were quantified. The implications of changes for the benthic and demersal fish communities using the lower estuary were estimated using the attractiveness to those communities of each physiotope, while considering the main estuarine habitat functions for fish, namely spawning, nursery, feeding and refuge areas and migratory routes. The lower estuary was highly affected due to urbanisation and development and, following a port/harbour expansion, its boundary moved seaward causing an increase in total area. Modifications led to the loss of most of its sandy and saltmarsh intertidal physiotopes, which were replaced by deeper subtidal physiotopes. The most attractive physiotopes for fish (defined as the way in which they supported the fish ecological features) decreased in area while less attractive ones increased, producing an overall lower attractiveness of the studied area in 2013 compared to 1933. The implications of habitat alterations for the fish using the estuary include potential changes in the nursery carrying capacity and the functioning of the fish community. The study also highlighted the poor knowledge of the impacts of habitat changes on fish due to coastal development and urbanisation and emphasises that ecosystem management and conservation will benefit from a wider understanding of habitat functional roles and habitat changes influencing the functioning and structure of the fish communities

    Hypervelocity Stars: Predicting the Spectrum of Ejection Velocities

    Get PDF
    The disruption of binary stars by the tidal field of the black hole in the Galactic Center can produce the hypervelocity stars observed in the halo. We use numerical models to simulate the full spectrum of observable velocities of stars ejected into the halo by this binary disruption process. Our model includes a range of parameters for binaries with 3-4 M_Solar primaries, consideration of radial orbits of the ejected stars through an approximate mass distribution for the Galaxy, and the impact of stellar lifetimes. We calculate the spectrum of ejection velocities and reproduce previous results for the mean ejection velocity at the Galactic center. The model predicts that the full population of ejected stars includes both the hypervelocity stars with velocities large enough to escape from the Galaxy and a comparable number of ejected, but bound, stars of the same stellar type. The predicted median speeds of the population of ejected stars as a function of distance in the halo are consistent with current observations. Combining the model with the data also shows that interesting constraints on the properties of binaries in the Galactic Center and on the mass distribution in the Galaxy can be obtained even with modest samples of ejected stars.Comment: 26 pages, including 6 figures, accepted for publication in the Astrophysical Journa
    • …
    corecore