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Adapting to blurred or sharpened images alters perceived blur of a focused image (M. A. Webster, M. A. Georgeson, & S. M.
Webster, 2002). We asked whether blur adaptation results in (a) renormalization of perceived focus or (b) a repulsion
aftereffect. Images were checkerboards or 2-D Gaussian noise, whose amplitude spectra had (log–log) slopes from j2
(strongly blurred) to 0 (strongly sharpened). Observers adjusted the spectral slope of a comparison image to match different
test slopes after adaptation to blurred or sharpened images. Results did not show repulsion effects but were consistent with
some renormalization. Test blur levels at and near a blurred or sharpened adaptation level were matched by more focused
slopes (closer to 1/f) but with little or no change in appearance after adaptation to focused (1/f) images. A model of contrast
adaptation and blur coding by multiple-scale spatial filters predicts these blur aftereffects and those of Webster et al. (2002).
A key proposal is that observers are pre-adapted to natural spectra, and blurred or sharpened spectra induce changes in
the state of adaptation. The model illustrates how norms might be encoded and recalibrated in the visual system even when
they are represented only implicitly by the distribution of responses across multiple channels.
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Introduction

Blur is an intrinsic and important feature of image
quality and is an attribute that observers are highly
sensitive to (Watt & Morgan, 1983, 1984; Wuerger,
Owens, & Westland, 2001). The image formed on the
retina is inherently blurred due to aberrations in the cornea
and lens of the eye, the finite aperture of the pupil,
fluctuations in accommodation, and limited depth of
focus. In addition, information from the natural environ-
ment may be blurred when factors such as motion or mist
are present in the scene. Despite the prominence of such
imperfections in the retinal image, most observers do not
report the world as appearing out of focus, and even
observers with substantial refractive errors or neural
acuity deficits may not normally experience the world as
blurry. In fact, human observers are very good at judging
whether an image itself is in proper focus (Field & Brady,
1997; Tadmor & Tolhurst, 1994).
The appearance of correct focus might reflect learning

the average blur we are exposed to and associating that with
the structure of the world. An alternative is that visual
coding is adapted to compensate for retinal image blur, in
the same way that color appearance is compensated for the

spectral biases present in the scene (e.g., because of the
illumination) or the eye (e.g., because of filtering by the
lens or macular pigment). There is now substantial
evidence that the visual system does adapt or adjust to
changes in the level of blur. For example, adaptation to
optically induced blur has an effect on acuity (George &
Rosenfield, 2004; Mon-Williams, Tresilian, Strang, Kochhar,
& Wann, 1998; Pesudovs & Brennan, 1993; Rajeev &
Metha, 2010) and contrast sensitivity (Mon-Williams et al.,
1998; Rajeev & Metha, 2010); and adapting to images
with varying levels of blur induces strong biases in the
shape of the contrast sensitivity function measured both
psychophysically (Webster & Miyahara, 1997; Webster,
Mizokami, Svec, & Elliott, 2006) and in single cells in
primary visual cortex (Sharpee et al., 2006). Moreover,
adaptation to blurred images has a dramatic effect on the
appearance of blur (Battaglia, Jacobs, & Aslin, 2004;
Elliott, Hardy, Webster, & Werner, 2007; Vera-Diaz,
Woods, & Peli, 2010; Webster, Georgeson, & Webster,
2002; Webster et al., 2006). Specifically, after adapting to
images that are blurred (or sharpened) by “distorting” the
ratio of low to high spatial frequency content, a physically
focused image appears too sharp (or blurred), so that the
point of best subjective focus is shifted toward the
prevailing frequency content of the adapting images.
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However, the consequences of these adaptation effects
for the perception of image focus remain unclear. If
adaptation serves to “discount” blur in the retinal image so
that the world appears focused, then the adapting images
themselves should appear less blurred and better focused
as observers adjust to them. This would result in a
“renormalization” of perceived focus so that the adapting
stimulus appears more neutral. Alternatively, the adapta-
tion could instead reflect a selective loss in sensitivity to
the adapting blur level. This could leave the perceived
level of adapting blur unchanged, while inducing a
“repulsion” aftereffect in nearby blur levels, because the
distribution of responses to different blur levels is biased
away from the adapting level (Graham, 1989). For
example, images physically sharper (or more blurred)
than the adapting level might appear even sharper (or even
more blurred). Webster et al. (2002) informally tested
these alternatives by asking subjects to rate the perceived
focus of images after a period of prolonged exposure and
found that the images were subjectively judged as less
blurred, consistent with renormalization. However, their
experiment left unresolved whether the reported shifts
reflected a change in perception or criterion. Moreover,
both patterns of adaptation predict similar aftereffects in a
physically focused image (i.e., in both cases a blurred or
sharp adapter will cause a focused image to appear
sharper or blurrier, respectively). Thus, prior measure-
ments of blur adaptation with focused tests cannot
discriminate between the models. To accomplish this, in
the present study, we used an asymmetric matching task in
order to measure how the adaptation altered the appear-
ance of blur over a wide range of test blur levels, for
which the two forms of adaptation make different
predictions.

The form of the adaptation is important for under-
standing both the functional implications of the adaptation
and the representation of blur in the visual system.
Renormalization would imply that the point of perceived
focus reflects a perceptual norm that appears neutral and
qualitatively distinct from other levels along the stimulus
dimension (Webster & Leonard, 2008). This is similar to
the special nature of “gray” as a norm in color vision.
Norms are typically modeled as a balanced response
across a small number of broadly tuned channels (e.g.,
two channels tuned to blurrier or sharper), or as the null
point in a single opponent channel. In contrast, repulsion
aftereffects imply that the stimulus dimension is repre-
sented by multiple narrowly tuned mechanisms. In that
case, no single level is special and adaptation instead
produces a more localized sensitivity loss (though this is
again a form of normalization, to the relative sensitivity
across the set of channels). Repulsion is in fact character-
istic of the aftereffects of size or spatial frequency
(Blakemore & Sutton, 1969). Indeed, such aftereffects
were central to the development of multi-channel models
of spatial vision. How can a norm for blur exist within
such models?
One possible answer is that the different behaviors of

the broadband vs. narrowband models arise when the
stimulus is narrowband (e.g., a single spatial frequency;
Figure 1 right). If the stimulus itself is broadband, then a
unique norm again exists when the responses are balanced
across the set of channels (Figure 1 left). For example, if
perceived blur is related to the relative energy at different
frequencies, then a multiple channel model might repre-
sent a norm when the responses are balanced across the
relevant set of channels. An aim of our work was therefore
not only to test for the presence of norms in blur

Figure 1. Some ideas about spatial channels, adaptation and blur. Filter sensitivities (dashed curves) might normally be scaled to give
equal responses to the average (1/f ) spectrum of natural images (dashed line in left panel for the norm (N)). Left: adapting to a steeper,
blurred spectrum (solid line, A) alters the relative sensitivities across all channels (red curves) so that responses would be renormalized
for the new adapting level. This might cause all slopes (blur levels) to appear shallower (sharper; arrows). Right: basis for the repulsion
effect. Adaptation of the same tuned mechanisms to a narrowband stimulus (N/A) instead locally depresses sensitivity to the adapting
stimulus. This would bias the distribution of responses away from the adapting level toward either lower or higher perceived frequency
(arrows).
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adaptation but to assess how these norms could arise given
standard multi-channel models of spatial coding.
The representation of blur in the visual system may be

carried by both global and local codes (Field & Brady,
1997; Georgeson, May, Freeman, & Hesse, 2007). Natural
imagesVlike simple edgesVhave amplitude spectra char-
acterized by greater energy at lower spatial frequencies
and thus follow a roughly inverse relationship between
amplitude and frequency. However, the slope of the global
amplitude spectrum varies widely across images and thus
is itself a poor predictor of image focus (Field & Brady,
1997; Tolhurst, Tadmor, & Chao, 1992). Nevertheless, for
any given image, steepening the slope biases the spectrum
toward lower frequencies and increases the perception of
blur, while shallower slopes conversely increase the
relative energy at higher frequencies and perceptually
sharpen the image. In the present study, we used these
slope changes to manipulate perceived blur and to test
how different levels of blur are affected by adaptation.
While these variations do not simulate actual optical blur,
nor Gaussian blur, they have the advantage that they span
both blurred and sharp directions relative to the original
image and thus may more directly tap the neural
calibrations underlying perceptual judgments of focus.
We also explored adaptation to these spectral slope

variations for two classes of imagesVedges and filtered
spatial noise. Blurring or sharpening an image can change
many attributes of an image. These changes include
variations in the spatial profile of edges and in the
apparent texture contrast at different spatial scales. They
can also include changes in perceived shape, for example,
with astigmatic blur (Anstis, 2002; Sawides et al., 2010).
It is not clear which of these attributes might drive the
adaptation nor whether they might adapt in similar ways.
For example, in simple step edges, the spatial frequency
components are all in phase and blurring or sharpening
produces a localized luminance change. When an edge is
blurred, the luminance change becomes more gradual and
the width of the transition is increased. When adapting to
blur in edges, observers might be encoding and adapting
to the altered luminance profile or the local scale of the
edge (Georgeson et al., 2007) rather than the global
amplitude spectrum. For noise images, however, the
perception of blur or sharpness might be carried by the
salience of texture at different scales (Field & Brady,
1997). For example, a blurred noise image appears to have
less “speckle,” perhaps reflecting a more global coding of
spatial scale information.
We measured the aftereffects of adapting to blur for

filtered noise and for light–dark checkerboards to try to
isolate different potential cues to focus. For both, our
results suggest that the adaptation does tend toward
renormalization of perceived focus, and we show that
the data can be explained rather accurately by a model of
the adaptive changes in the contrast response of spatial
filter mechanisms that are pre-calibrated to the average
amplitude spectrum of focused images.

Methods

Observers

Four female observers participated in the main experi-
ment (mean age = 29.3, range 25–36 years), all having
normal or corrected-to-normal visual acuity. Observers
were recruited from the University of Nevada, Reno.

Apparatus and stimuli

Stimuli were presented on a gamma-corrected 50-cm
Sony Triniton color monitor driven by a PC with 8-bit
color resolution. The original images consisted of 2 sets
corresponding to: (1) 50 grayscale images of noise filtered
to have an amplitude spectrum of 1/f (Webster &
Miyahara, 1997), and (2) two grayscale images of a
checkerboard pattern, one a contrast reversal of the other.
The noise images were constructed by first creating white
noise with pixel intensities chosen from random normal
deviates and then filtering to a 1/f spectrum. The images
had a fixed root mean square contrast of 0.35, chosen to
avoid significant truncation (G0.5%) of the pixel inten-
sities before or after filtering. The images were adjusted to
a mean gray level of 128, corresponding to a luminance of
15 cd/m2, and were presented on a uniform gray back-
ground with the same luminance.
All images contained 256 � 256 pixels, subtended 4- in

a field corresponding to 256 � 256 pixels on the monitor,
and had a maximum spatial frequency of 32 c/deg. To blur
or sharpen, each image was filtered by multiplying the
original amplitude spectrum by f !, where f is spatial
frequency in cycles per degree, and ! controls the
magnitude of change (Field & Brady, 1997; Knill, Field,
& Kersten, 1990; Tadmor & Tolhurst, 1994; Webster et al.,
2002). The absolute (log–log) spectral slope was thus
equal to ! j 1. For the test stimuli, ! was varied from
j0.75 (i.e., absolute slope = j1.75, appearing strongly
blurred) to +0.75 (i.e., absolute slope = j0.25, appearing
strongly sharpened) in steps of 0.25. Examples from the 2
filtered image sets are shown in Figure 2. For the
comparison images, spectral slopes were varied in steps
of 0.01 to allow finely graded adjustments in blur
magnitude.

Procedure (Experiment 1)

Observers viewed the screen binocularly from a distance
of 112 cm, and their basic task was to adjust the spectral
slope of a comparison image in a trial-by-trial staircase
procedure, to match the perceived blur or sharpness of a
test image that was presented after exposure to an adapting
image. There were three adaptation conditions: (a) adaptation
to the original images (1/f spectrum; ! = 0); (b) adaptation
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to blurred images (! = j0.5); and (c) adaptation to
sharpened images (! = +0.5). For each adapting condition,
there were 7 test conditions defined by 7 ! levels from ! =
j0.75 to +0.75 (see Figure 2). Slope matches for each test
level were estimated 3 times for a total of 126 trials (7 test
levels � 3 adaptation levels � 2 image sets � 3 repeats)
for each observer. Sessions began with an adaptation
period of 120 s, which displayed either a random
sequence of the noise images or a counterphasing
sequence of the checkerboard images, at only one of
the adaptation levels: (1) blurred (! = j0.5), (2) original
(! = 0), or (3) sharpened (! = +0.5) in different sessions.
The inner edges of the adaptation images were located
1- to the left of a 0.34- fixation cross, accompanied by
a uniform gray field (gray level 128) to the right of
fixation. For adaptation to noise, the random sequence
involved resampling a noise image from the set every
0.25 s, to homogenize local light adaptation and
minimize afterimages. There was a 0.25-s blank gray
screen between adaptation and test images.
The 0.5-s test phase displayed one of the 7 test ! levels

to the left of fixation (same location as the adaptation
sequence) and a variable comparison image to the right
of fixation (previously a uniform field). Using a two-
alternative forced-choice staircase method, the observer’s
task was to adjust the ! of the comparison image on the
right to match the perceived ! of the test image on the left
by pressing buttons to indicate whether the comparison
image appeared sharper or more blurred. During a single
session, two staircases with a 1-up, 1-down procedure
were randomly interleaved, and each adjustment changed
the spectral slope of the right-hand image by an ! of 0.01.
Each staircase terminated after 8 reversals. The test phases
were interleaved with 6-s periods of top-up adaptation.
The mean ! from the last 6 of 8 reversals was used as the
estimate of the observer’s perceived match to the test
image.

Control experiment (Experiment 2)

A potential problem with the adaptation configuration
just described is that observers might be adapting differ-
ently to the contrast of the adapting image (to the left of
fixation) and the zero-contrast uniform field (to the right
of fixation). A difference in perceived contrast might
affect the judgments of blur (e.g., because lower contrast
images might appear sharper). To reduce this possibility,
the second experiment used a random sequence of control
adapting images (1/f spectrum; ! = 0) to the right of
fixation, instead of a uniform field. One observer (YM)
was recruited from the first experiment and the second
was author MW. Both observers had normal or corrected-
to-normal visual acuity. Procedures were otherwise the
same as the first experiment, except that each session was
repeated twice using only the noise image set to give a
total of 42 settings (7 test levels � 3 adaptation levels � 1
image set � 2 repeats).

Results

Experiment 1: Blur matches

The two leftmost panels in Figure 3 show the perceived
! matches following adaptation for the two image sets,
averaged over the 4 observers (checkerboard: top left;
spatial noise: bottom left). Significant adaptation effects
can be seen for matches made during the blurred (! =
j0.5) and sharpened (! = +0.5) adaptation conditions
(F(2,6) = 21.01, p G 0.01 ANOVA, main effect of
adaptation condition), irrespective of the image set used
for adaptation. In the blurred adaptation condition,
perceived ! matches are seen to shift toward a higher !

Figure 2. Example of the 2 image sets and 7 filtered ! levels. ! values of j0.5 (blurred), 0, and 0.5 (sharpened) were used for adaptation.
All 7 filtered ! levels were used as test images. (A) Spatial noise images. (B) Checkerboard images.
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value, indicating that the test images appeared sharper
after blurred adaptation than after focused or 1/f adapta-
tion (! = 0). The opposite can be seen for the sharpened
adaptation condition; perceived ! matches shifted to lower
! values, showing that the test images appeared more
blurred.
The shift in perceived ! matches following adaptation

was not significantly different for the two image sets
(F(1,3) = 2, NS), and results were qualitatively similar for
the 4 observers. This point is illustrated for two observers
tested with the checkerboards (Figure 3, top middle and
right panels) and spatial noise (bottom middle and right
panels).
The shifts in the ! matches as a function of the test !

level are inconsistent with a simple repulsion model. As
noted, this idea supposes that adaptation will not alter the
perceived level of the adapting stimulus, and that test
levels higher or lower than the adapting level will appear
shifted in opposite ways. (The predictions for repulsion
are illustrated later, in Figure 9.) Instead, the data show
that both the blurred and the sharpened adapters appeared
more focused after adaptation. These shifts are highlighted
in Figure 4, which shows, for either the blurred or
sharpened adapter, the difference between mean ! matches
and a veridical (i.e., physical) match. Adapting to blurred
images (! = j0.5; red circles) made most test images
seem sharper but not to equal extents: the sharpening
effect was less strong for test images that were already

sharpened (! = +0.25 to +0.75). Similarly, adapting to
sharpened images (! = +0.5; blue squares) made sharp-
ened test images seem more blurred but with less effect on
blurred test images. This effect of the test ! level on the
shift away from a physical match following adaptation to
blurred or sharpened images was significant (F(12,36) = 3.4,
p G 0.01 ANOVA). Adaptation had stronger effects at or
near the adapting level than on test levels that were far
removed. The aftereffects thus exhibit a renormalization,
but not one that is uniform across all blur levels.
If the data always exhibited “repulsion,” then 1/f

adapting images (! = 0) should make sharpened test
images seem even sharper, and blurred test images more
blurred, but this was not so. Mean ! matches (absolute
values) did not deviate significantly from the physical !
level of the test images after adaptation to a sequence of
1/f images (t(1,12) = 2.18, p = 0.8). The lack of significant
aftereffects from 1/f adapting images is consistent with the
idea of renormalization, since this adapting level is
already at the norm and so should not induce a recalibra-
tion. We explore this in the model described below.

Experiment 2: Controlling for adaptation
to contrast

As noted, a possible complication in Experiment 1 is
that the aftereffects might be influenced by changes in

Figure 3. Experiment 1. Perceived ! match after adaptation to blurred (red circles, ! = j0.5), focused (green triangles, ! = 0), or
sharpened (blue squares, ! = +0.5) images. The dotted gray line denotes a veridical match. (Top) Checkerboard images. (Bottom) Spatial
noise images. (Left) Mean of the 4 observers. (Middle and Right) Two individual observers, JH and YM, respectively. Error bars are
T1 SEM.

Journal of Vision (2011) 11(2):7, 1–18 Elliott, Georgeson, & Webster 5

Downloaded From: https://jov.arvojournals.org/pdfaccess.ashx?url=/data/journals/jov/933481/ on 08/20/2018



apparent contrast as well as apparent Fourier spectral
slope. The comparison stimuli were shown on a previ-
ously uniform (zero-contrast) field while the test stimuli
were shown on a field preceded by the adapting images,
and so, because of contrast adaptation, the test images
probably had a lower perceived contrast, and this might
affect perceived blur (May & Georgeson, 2007). To
control for this, the experiment was repeated with 1/f
noise images presented on the comparison side during
adaptation while the adapting noise images were shown
on the test side.
Similar aftereffects were found for these conditions

(Figure 5). Adapting to 1/f (! = 0), images again produced
little shift in perceived ! matches, but this must now be
expected (by symmetry) because the adapting images
were the same on both sides of the display. Adapting to

sharpened images caused the test images to appear more
blurred (Figure 5B, blue squares), and adapting to blurred
images produced a sharpened aftereffect (Figure 5B, red
circles). Like Experiment 1, these effects were not
uniform across the test levels but were instead stronger
for test levels near the adapting level. Thus, this experi-
ment confirmed that the effects of adaptation persisted
when potential effects of contrast differences during
adaptation were controlled.

Summary of results

The main features of our experimental results are: (i)
adapting to a 1/f or in-focus image (! = 0) produced little
or no systematic change in perceived blur of any test

Figure 5. Experiment 2. (A) Perceived matches following adaptation to blurred (red circles, ! = j0.5), 1/f (green triangles, ! = 0), or
sharpened (blue squares, ! = +0.5) noise images on the left, and 1/f noise images on the right, averaged for the two observers. (B) Mean
shifts in perceived matches after adaptation to blurred images (red circles, ! = j0.5) and sharpened images (blue squares, ! = 0.5)
expressed as the difference between observed and veridical matches. The dotted gray line denotes a veridical match in both panels. Error
bars are T1 SEM.

Figure 4. Experiment 1. Mean shifts in perceived ! matches after adaptation to blurred (red circles, ! = j0.5) and sharpened (blue
squares, ! = +0.5) images expressed as the difference between observed and veridical matches. The dashed gray line denotes a veridical
match. Means for the checkerboards are shown in the left panel, and means for spatial noise are shown in the right panel. Error bars are
T1 SEM.
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image; (ii) adapting to a sharpened image (! = +0.5) made
1/f or sharpened images seem more blurred but had much
less impact on physically blurred ones; (iii) adapting to a
blurred image (! = j0.5) did the reverse, making 1/f or
blurred images seem sharper but with a much smaller
effect on physically sharpened ones. In the next section,
we develop a quantitative, multi-scale model of contrast
adaptation and blur coding to account for the observed
aftereffects.

Modeling the blur aftereffects

After observers have adapted to a moderate- or high-
contrast grating for a few minutes, the contrast threshold
for gratings of similar orientation and spatial frequency is
raised (Blakemore & Campbell, 1969; Pantle & Sekuler,
1968) and perceived contrast of such gratings is lowered
(Blakemore, Muncey, & Ridley, 1973; Georgeson, 1985).
Cells in the primary visual cortex show a reduced
response after grating adaptation, and the change in
contrast-response function can be characterized as a
multiplicative change in contrast gain, or in response
gain, or more often both (Albrecht, Farrar, & Hamilton,
1984; Dean, 1983; Ohzawa, Sclar, & Freeman, 1982).
Some cortical cells show a shift in their peak or preferred
spatial frequency or orientation after adaptation to off-
peak stimuli, implying that for these cells adaptation
involves more than a simple reduction in responsiveness.
Such shifts in tuning seem to occur in complex cells rather
than simple cells (Movshon & Lennie, 1979; Muller,
Metha, Krauskopf, & Lennie, 1999).
In psychophysics, several descriptive models of contrast

adaptation are possible (Foley & Chen, 1997). We asked
whether the observed changes in perceived blur and
sharpness might be explained by the known psychophys-
ical properties of contrast adaptation, as applied to a
multi-channel system for encoding blur. For ease of

exposition with minimal complexity, we begin with a
simple, 1-parameter, descriptive model of contrast adap-
tation. Georgeson (1985) found that the reductions in
perceived contrast of sine-wave gratings after adaptation to
similar gratings could not be described by a multiplicative
change in contrast gain but could be described by a simple
subtractive rule: perceived (matched) contrast of a grating
was fairly well predicted by subtracting about one-third of
the adapting contrast from the test contrast. Note that this
descriptive rule is expressed in terms of physical contrasts,
not the responses of visual mechanisms.

Multi-channel model of blur adaptation

Here we are dealing with complex images that
presumably stimulate many filters at different spatial
scales and orientations, so we elaborated the subtractive
rule by supposing that it operates at the level of individual
filters. A sketch of the main components of the model is
shown in Figure 6, elaborated below. In brief, we propose
that adaptation alters the responses of individual filters,
and that blur (or sharpness) in these tasks is determined by
whether responses rise (or fall) as filter scale increases. If
responses rise (or fall) more steeply with increasing scale
after adaptation, then perceived blur (or sharpness) is
increased. Crucially, however, we find that to account
adequately for the results we must suppose that observers
are pre-adapted to a focused world before they begin the
experiment. We shall propose that blurred or sharpened
adapting images whose spectra differ from this norm
temporarily change the state of adaptation, but focused
images or blank images do not.
The model filters had odd-symmetric receptive fields

that were first directional derivatives of a 2-D Gaussian
function G(x, y; s) (sometimes called “edge detectors”; see
Georgeson et al., 2007, their Figure 1A) at 4 orientations
(0, 45, 90, and 135 deg from vertical) and 7 scales s (from

Figure 6. A sketch of the multi-scale model for blur adaptation. There were 7 filter scales, at 4 orientations. Strength of adaptation is
controlled by factor k. Blur is coded from the way the adapted response R rises or falls across scales. See text for details.
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1 to 8 pixels in 0.5 octave steps). An expression for the
vertically oriented receptive field of scale s is

¯
¯x

G x; y; sð Þf g ¼ jx I g sð Þejx2=2s2 ejy2=2s2 : ð1Þ

For the 4-deg image size used, optimal spatial frequencies
of these filters ranged from 10 c/deg (s = 1 pixel) to
1.25 c/deg (s = 8 pixels). (Note that filter orientations 180,
225, 270, and 315 would be redundant, since those filters
differ only in sign from the first four, and we used an
unsigned (r.m.s.) response from each filter.) Spatial
frequency bandwidth at the optimal orientation is the
same for all filters (2.6 octaves full-width at half-height).
At small scales, the small receptive fields (RFs) contain
just a few significant pixels, and the way in which they are
sampled becomes important. We used the optimal method
for discretely sampled Gaussians described by Lindeberg
(1994). Receptive field amplitudes were scaled by a factor
g(s) chosen so that all filters had the same amplitude in the
2-D Fourier domain, and this meant that the variance or
“energy” of the response to 2-D noise with a 1/f spectrum
was the same for all filters (Field, 1987; Field & Brady,
1997). This can be thought of as a long-term calibration of
the filters for natural images, whose average amplitude
spectrum is very close to 1/f [the weighted mean spectral
slope from 11 studies, 1176 images, was j1.08 (Billock,
2000)]. The factor g(s) was not varied in the simulations
described here.
The images used in a given experiment were convolved

with each of the 28 filters, and each filter’s response was
reduced to a single number r by computing the standard
deviation of the filtered image values over all pixel
positions, omitting a 16-pixel-wide border to minimize
edge truncation artifacts. The value of r can be regarded
as a measure of the spatial contrast (or more strictly, the
amplitude of variation) in the spectral band that is “seen”
by a given filter. The model thus adopts a global, rather
than local, approach to the encoding of image blur (Field
& Brady, 1997). For each test blur, the responses (r) were
averaged by taking the r.m.s. value over different test
exemplars (32 different noise samples for Experiments 1
and 2; four different test images [face, leaves, meadow,
checks] for the experiment of Webster et al., 2002). Since
r is computed separately at each scale and orientation, we
can define r(test) as the 4 � 7 array of responses across
orientations and scales, representing the average pattern of
filter responses to a set of test images that had a specific
spectral slope. Similarly, r(adapt) is the pattern of
responses to a specified adapting slope.

Simple fatigue model

The subtractive model can now be defined as

Rðtest;adaptÞ ¼ rðtestÞj k I rðadaptÞ: ð2Þ

R(I) is the 4 � 7 array of filter responses to the test pattern,
as modified by the effects of the adapt pattern. Small or
negative values of R (below 0.1) were set to an assumed
baseline value of 0.1. Equation 2 is an example of a
“fatigue model,” because each filter’s loss of response to
the test image is a simple function of how much that filter
responded previously to the adapt image(s). The free
parameter k represents the strength of adaptation, and we
assumed it to be the same for all filters. For 3 c/deg sine-
wave gratings, k was about 0.3 (Georgeson, 1985). When
the adapter is blank, r(blank_adapt) = 0, and so R(test,
blank_adapt) = r(test).
To predict judgments of blur or sharpness, we adopted

an approach similar to that of Field and Brady (1997), by
pooling the responses R(I) over the 4 filter orientations and
then computing the slope of the (log–log) response over
scales. The average (r.m.s.) value of R was calculated over
filter orientations, leaving just a single response value
Rav(s) at each filter scale s. This reduction to a single
number, pooled over space and orientation, is not intended
as a general model for spatial vision but seems appropriate
here where the image filtering is global and isotropic, and
the observer makes a simple binary choice between two
images. The values of Rav(s) were fitted with a power
function (Rav = a I sb) by finding the least squared error,
and the exponent b was taken as the code for perceived
blur. Roughly speaking, b estimates blur from the (log)
ratio of activity in large- and small-scale filters.
Figure 7A shows how Rav varies with filter scale s when

nothing is subtracted (blank adaptation). For a 1/f image
(! = 0; filled circles) Rav is, by design, constant across
scale and so b is close to 0. As spectral blur increases (! G
0; open symbols), responses decrease at small scales and
slope b becomes increasingly positive. The reverse is true
with spectral sharpening (! 9 0; filled symbols): slope b
becomes increasingly negative. Slope b is a therefore a
valid metric for this type of blur, because it varies
monotonically with changes in the Fourier spectral slope
of the test image. Figures 7B–7D show that this
monotonic relation holds true after subtractive adaptation
to different spectral slopes, but the response slopes b for
individual test images are altered by adaptation. Compared
with 1/f adaptation (Figure 7B), the fitted lines tend to
rotate toward positive slopesVmeaning greater blurVafter
sharpened adaptation (Figure 7C) and toward negative
slopesVmeaning greater sharpnessVafter blurred adapta-
tion (Figure 7C).
We assume that the observer’s decisions about blur

(spectral slope) are based on b. In the present experiments,
images viewed after different adapting conditions should
appear to match in blur when they yield the same value of
b. Thus, the model can generate predictions about the
observed blur matches. Figure 8 plots the response slopes
b as a function of spectral slope offset ! for each of the 4
adapting conditions of Figure 7, with adapting strength k =
0.4. Consider the blurred adapter (red, filled circles): each
test slope yields a certain response code b, and so on this
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model the predicted blur match is obtained by reading off
the curve that represents the comparison condition, to find
the comparison ! that yields the same response code b.
For Experiment 1, the relevant curve is for blank
adaptation (open diamonds). In this way, using cubic
spline interpolation inMatlab, the model made predictions
that could be compared directly with the experimental
data. For Experiment 2, the comparison side was adapted
to 1/f images, so the predicted blur matches were
interpolated from the green curve (adapt ! = 0) instead.

Failure of the simple fatigue model

Figure 9 shows that the simple fatigue model fails. For
Experiment 1, it predicts a strong “repulsion” effect for all
three adapters, centered on the point at which the adapt
and test blurs are equal (marked by dashed circles in
Figure 9A). That is, test images sharper than the adapter
should be matched by increasingly sharpened images, and
test images more blurred than the adapter should be

matched by even more blurred comparison images. The
fatigue model predicted a pattern of repulsion that was
quite unlike the observed dataVwith trends in entirely the
wrong direction (Figure 9B). Interestingly, if we had used
only focused (1/f) test images (test ! = 0 in Figure 9B), we
might wrongly conclude that the fatigue model was
working quite well. The use of a wide range of test blurs
was crucial in showing that the fatigue model fails
miserably.

Blur adaptation as adjustment of an internal
adaptive norm

In light of this failure, we introduce an extension to the
subtractive model based on two key ideas about the
normative nature of adaptation that prove to be more
successful, and perhaps more interesting, than the simple
fatigue model. The two key ideas are: (i) the visual system
is pre-adapted to natural images (with an average 1/f
spectrum) before the experiment begins, and (ii) the state

Figure 7. How the simple (subtractive adaptation; no norm) model’s pooled response Rav varies with filter scale s after adaptation (k = 0.3)
to (A) blank, (B) 1/f spectrum (! = 0), (C) sharpened (! = 0.5), or (D) blurred (! = j0.5) image spectra. Images were spatial noise, as in
Experiments 1 and 2. Symbols represent different test slope offsets (!) as shown, and slope of fitted lines indicates the resulting blur code
b. Note that increasing filter scale s corresponds to decreasing the preferred spatial frequency of the filter. Compared with (B), the fitted
lines tend to rotate anticlockwise, meaning greater blur, after sharpened adaptation (C), but clockwise, meaning greater sharpness, after
blurred adaptation (D).
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of adaptation is altered by exposure to adapting images
but is unchanged by exposure to a blank field. This last
point amounts to assuming that the pre-adapted state
persists in the absence of any evidence to the contrary.
Such “storage” of visual adaptation has been observed in a
variety of circumstances (e.g., McCollough, 1965;
Thompson & Wright, 1994; van de Grind, van der Smagt,
& Verstraten, 2004; Wohlgemuth, 1911).

An ensemble of images with an average 1/f spectrum
may be called the norm. Thus, in the format of Equation 2,
we have for the pre-adapted state:

Rðtest; pre-adaptÞ ¼ rðtestÞj k I rðnormÞ: ð3Þ

In practice, the response array r(norm) was calculated as
the set of filter responses acquired for 1/f test images in
the simulated experiment, but we might think of it more
generally as the stored, long-term average response array r
to natural images. Note that this term pre-adapts the system
to 1/f images, in the same subtractive way as before.
To summarize the norm-based model, after experimental

exposure to adapting images, Equation 2 applies; before
experimental adaptation, or after blank adaptation, Equation 3
applies; after adaptation to 1/f images (equivalent to the
norm), the two equations are equivalent. Unlike the first
model, the net response R(I) to any test image is now the
same for a blank adapter and for a 1/f adapter, and both are
the same as in the pre-adapted state. Equations 2 and 3 entail
a stable perceptual response to 1/f images but an adaptive
change in response to sharpened or blurred ones. Once the
system is pre-adapted to the norm, further adaptation to
either 1/f images, or blanks, causes no change in the
system’s response to a test image: R = r(test) j k I r(norm).
However, adaptation to a sharp or blurred adapter does
change the state of adaptation and so changes the response
to a test image: R = r(test) j k I r(adapt); the adapter
behaves (temporarily) like a new norm.

Predictions of the two models

In both the fatigue and norm-based models, the net
outcome R(I) is used to make judgments, via a representation

Figure 9. (A) Observed and predicted blur matches for the noise images in Experiment 1. Predictions are from the simple fatigue model
(Equation 2), with adaptation strength k = 0.3. (B) Blur aftereffects across the range of test blurs, expressed as the difference between
observed and veridical matches, for sharpened (blue squares, ! = 0.5) and blurred (red circles, ! = j0.5) adapters. The model exhibits
“repulsion” of test blur matches away from the adapting blur (dashed circles) for all 3 adapters. This was a very poor prediction for
Experiment 1.

Figure 8. Blur codes b as a function of test slope offset !, for noise
images, after subtractive adaptation (k = 0.4) to blurred (! = j0.5,
red circles), 1/f (! = 0, green triangles), or sharpened (! = +0.5,
blue squares) noise images, or no subtraction (open diamonds).
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of spectral slope (the blur code b). However, impor-
tantly, the two models can make different predictions.
When the adapter is blank, as it was on the comparison
side in Experiment 1, the norm-based model gives
R(test, blank_adapt) = r(test) j k I r(norm), while the
fatigue modelVwith no pre-adaptationVgives R(test,
blank_adapt) = r(test). These are clearly different and
lead to different codes b (compare the green triangles and
open diamonds in Figure 8). Thus, we can distinguish the
two models when a blank adapter is involved in the
experimental task (provided k is not close to 0).
Unlike the fatigue model, the norm-based model fitted

the noise-image data of Experiment 1 very closely
(Figures 10A and 10D), with only a single free parameter
(k = 0.3). It captured very well the variable degree of
induced blurring for different test images after sharpened
adaptation (! = 0.5, blue curves), including the slight
crossover to sharpening for the most blurred test image
(test ! = j0.75). The complementary effects of adapting
to blurred images, including a similar crossover, were also
well described by the model (red curves), except for one
data point, that may well be an outlier since no such
deviation was seen in Experiment 2.
For Experiment 2, where a 1/f adapter was shown on the

comparison side, the pattern of aftereffects was similar to
Experiment 1. Both versions of the model now made the
same predictions (Figures 10B and 10E), because, as
discussed above, no blank adapter was involved. The
aftereffects were a little larger than in Experiment 1 and
were well fitted by a small increase in adaptation strength
(k = 0.4 instead of 0.3). The assumption that observers
are pre-adapted to the world (average 1/f spectrum) is
critical in accounting for these results, because the same
model without this assumption failed resoundingly on
Experiment 1.
So far, we have discussed the models as applied to noise

images. Simulations were also run for the checkerboard
images of Experiment 1, as shown in Figures 10C and
10F. The aftereffects were smaller here, and the best fit was
obtained with a smaller adaptation strength (k = 0.15).
Bearing in mind these weaker effects, the norm-based
model fit fairly well, except for the most extreme test
images (! = T0.75). It may be that for images that have
distinct, localized features (edges in this case), observers
tend to shift from the global to a more local code for blur
judgments, but we did not attempt to model this.
Importantly, the fatigue model without pre-adaptation
again predicted repulsion and was a very poor fit for this
condition (not shown) as it was for the noise images
(Figure 9B).

Judgments of “best focus” after adaptation

Webster et al. (2002) had observers adjust the spectral
slope of natural images until they appeared “in focus,”
after adaptation to images with various modified spectral

slopes. Adaptation to blurred images made in-focus ones
seem too sharp, and vice versa. The shifts in focus
judgment (Figure 11) suggest partial renormalization but
fall short of full normalization (oblique dashed line in
Figure 11).
Presumably, observers adjust the spectral slope until it

meets some internal, stored standard that represents “in
focus.” Here the model’s estimates of best focus after
adaptation were obtained by finding which test stimulus
level (!) gave blur code b equal to a stored standard value
b0 given by in-focus images after neutral (either blank or
focused) adaptation. This last assumption sidesteps the
question of how the visual system knows which images
are in focus but enables us to test different models of
adaptation. For this task, the norm and no-norm versions
of the model have the same behavior because no blank
images are used in the experiment, and the standard b0 is
the same for both models.
The good fit of the model to Webster et al.’s (2002) data

is shown in Figure 11. Here the adaptation strength k = 0.5
was a little higher than in Experiments 1 and 2 (k =
0.3, 0.4). For comparison, the dashed curve in Figure 11
shows the somewhat smaller shifts in focus judgments that
would be predicted if k = 0.35 (mean of Experiments 1
and 2). This difference might simply reflect inter-subject
differences in adaptation strength (Vera-Diaz et al., 2010)
or differences in the images used (natural images vs.
noise). However, another possibility is that part of the
effect in Webster et al.’s data reflects higher level
criterion shifts (that could be modeled by a shift in the
value of the internal standard b0) in addition to the
sensory adaptation that alters blur code b for test images.
Matching tasks, like Experiments 1 and 2 here, are likely
to be immune from general criterion shifts since the
observer is asked to judge one image against another,
rather than judge them against an internal criterion. Put
simply, if two images appear similar, they should do so
whether we judge them to be in focus or not. Thus, the
present results are important in showing that the blur
aftereffects are not mainly due to criterion shifts. The
relatively small difference between dashed and solid
curves in Figure 11 could be due to criterion shift, or
other factors mentioned above.
In Appendix A, we consider divisive gain controls as

alternatives to subtractive adaptation. In brief, we find that
a model based on the contrast gain control (CGC) equation
of Foley and Chen (1997) can serve as a suitable substitute
for subtractive adaptation, but pre-adaptation remains
necessary to fit the data of Experiment 1. We have
focused primarily on the subtractive model not because it
is technically superior, but because of its simplicity. The
present data sets are too sparse to allow the various
parameters of the CGC model to be reliably or directly
estimated.
In the Supplementary material, we develop a dynamic

form of the model that gives further insight. It shows how
pre-adaptation, and the changing adaptation state, can be
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driven continuously by the history of stimulation, in a way
that is exactly consistent with the static (steady-state)
model described here. The dynamic version shows how a
key assumptionVpreservation of the adaptation state
during blank intervalsVcould be produced by a simple
storage mechanism that puts that state on “hold” when the
input contrast falls to 0, just as the capacitor holds the

voltage level in a simple RC filter circuit when the voltage
source is switched off.

Summary of the modeling

The norm-based model and fatigue model are closely
related and based on the same subtractive principle, but

Figure 10. (A–C) Observed blur matches for different test blurs compared with predictions of the norm-based model for the 2 experiments
reported in this paper. Adaptation strength (k) was chosen to fit the data separately in (A), (B), and (C). (D–F) Blur aftereffects (from (A)–
(C)), expressed as the difference between observed and veridical matches, for sharpened adapters (squares, 0.5) and blurred adapters
(circles, j0.5). For Experiment 2, predictions of the fatigue model are the same as the norm model shown here, but for Experiment 1, they
are very different (and incorrect), as seen in Figure 9.
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only the norm-based model gives a satisfactory account of
all three experiments (Experiments 1 and 2, and the results
of Webster et al., 2002). This model implies that the
visual system is pre-adapted to natural images (average 1/f
spectrum), that adapting to blank or 1/f images produces
no change in the state of adaptation, and that adapting to
sharpened or blurred images does change the state of
adaptation and leads to changes in perceived blur or
sharpness across a wide range of test images.

General discussion

We found that adaptation to blurred or sharpened
images tends to make the adapting images themselves
appear better focused (closer to 1/f) and thus to partially
renormalize the subjective point of focus relative to the
current adapting level. We showed that these response
changes can be closely accounted for by a model based on
simple assumptions about contrast adaptation and blur
coding by multiple channels in the visual system.
Adaptation within these channels acts to reduce imbalance
in the distribution of responses to the ambient blur level
and thus tends to renormalize the neural code for blur. Our

results thus suggest that the perception of image focus,
like many other perceptual dimensions, is represented as a
norm in visual coding.

Subjective focus as a perceptual and neural
norm

Phenomenologically, the point of subjective focus
behaves like a norm in having a special and neutral
appearance relative to other (blurred or sharpened)
stimulus levels; and here we have shown that it also has
a special status like other norms in terms of adaptation (in
that blurred or sharpened images bias the appearance of
focused images but not vice versa), similar to the
asymmetries seen with color or face adaptation (Webster
& MacLin, 1999). Note that from this perspective the
point of best focus is at the “center” of the perceptual
continuum. This differs from the perspective suggested by
considering only optical factorsVwhere images can
become too blurred but never too sharp. Accordingly,
most studies of blur have concentrated only on the low-
frequency (blurred) side of the representation. However,
the neural response can be imbalanced in either direction.
It would be instructive to revisit many of the measure-
ments that have characterized blur perception and dis-
crimination to examine performance for stimuli that are
instead over-sharpened. This might give a better under-
standing of the neural encoding of image focus and might
also reveal neural responses that are specifically associ-
ated only with increasing the low-frequency bias and thus
potentially with optical sources of blur.

Norms and multi-scale representations

Typically, norms are assumed to reflect a balance of
responses across two broadly tuned channels or to be
directly encoded as the null point within an opponent
mechanism (Webster & MacLeod, in press). Spatial
frequency coding differs in this regard because of the
wealth of evidence for multiple narrowly tuned channels
representing different spatial scales (reviewed by De Valois
& De Valois, 1980; Graham, 1989). In the case of blur, the
normalization behavior may arise not from the channel
structure alone, but from the fact that the stimulus is
broadband. Thus, the norm is again consistent with the
simple and general assumption that it reflects balanced or
unbiased responses across the set of channels, even if this
balance reflects responses in many channels that more
finely sample the stimulus dimension. We have shown that
the response changes induced by the adaptation can be
closely accounted for by a multi-scale model of spatial
coding. The main assumptions of the model included (i)
spatial filters at multiple scales, (ii) response reduction
from adaptation within each filter, and (iii) the encoding

Figure 11. Predictions of the norm-based model (k = 0.5)
compared with the blur aftereffects of Webster et al. (2002),
derived from judgments of best focus after adaptation to natural
images with various levels of blur or sharpening. The fatigue (no-
norm) model makes identical predictions for this experiment.
Oblique dashed line shows where data would lie if full normal-
ization took place, i.e., if blurred or sharpened adapters came to
look perfectly focused during the period of adaptation. Dashed
curve shows model predictions for k = 0.35; see text.
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of (global) blur from the relative activity across filter
scales.

Partial normalization

We have seen that the effect of adaptation on blur did
not conform precisely to any of the patterns we had
envisaged. Neither repulsion (Figure 9), nor complete
normalization (Figure 11), nor uniform normalization
across all test blurs (Figure A1) were adequate descrip-
tions of the observed changes in blur matching across the
wide range of test blurs used. Instead, our analysis
suggests that prolonged adaptation to natural images
(pre-adaptation to the norm) tends to persist and to
amplify the blur response to temporary deviations from
the normal state. Figure 8 (green triangles) reveals that the
blur codes after adaptation to 1/f are twice as large (b È =
j2!) as they are without adaptation (open diamonds:
b È = j!). This would make short-term changes in image
focus or image quality over time more salient than without
adaptation, and that could be useful in both perception and
accommodation control. However, if the blurred or
sharpened state persists, the system readapts and that
salience declines. The adapters come to look more
focused, and this can be seen as a form of normalization,
but we know rather little about its time course.

Limitations

One objection to the pre-adaptation concept is that, if
we are already adapted to in-focus natural images, then
further adaptation to such images in the laboratory should
have no additional effect. That is what we have assumed
here, but Webster and Miyahara (1997) found that
exposure to a sequence of unrelated natural images, with
a new image every 300 ms, substantially reduced contrast
sensitivity and perceived contrast of sine gratings at
relatively low spatial frequencies (e4 c/deg) but not at
higher frequencies. Similar findings were reported by Bex,
Solomon, and Dakin (2009). It is not easy to dismiss this
problem, but its restriction to low spatial frequencies
suggests that temporal factors may be important. The
rapid sequence of abruptly changing images may have had
a spatiotemporal power spectrum with greater energy at
high temporal and low spatial frequencies than in natural
viewing, where many saccades are small. If so, this may
have increased the adaptation level of low SF filters that
have transient responses and a greater preference for
higher temporal frequencies. A possible resolution of this
problem is that the loss of sensitivity to low frequencies
observed in these cases might be outside the range of
higher frequencies that could be more critical for judging
perceived blur and sharpness. A further possibility is that
adaptation effects for broadband stimuli, of the kind we

have used here, cannot be fully predicted by supposing
independent response changes at different spatial frequen-
cies. This was suggested by the finding that adaptation to
square waves produced little threshold elevation at the
higher harmonics even though adaptation to these har-
monics presented alone did reduce sensitivity (Nachmias,
Sansbury, Vassilev, & Weber, 1973; Tolhurst, 1972). It is
also suggested by the fact that adapting to square wave or
1/f patterns does not bias perceived focus but does
selectively alter contrast sensitivity.
A final limitation is that the our model was designed

only to account for the attribute of global blur and may
not predict how adaptation adjusts in other ways to the
blur in images. For example, adapting to a single blurred
edge has been found to show a repulsion aftereffect, rather
than normalization (Georgeson, 2001). Perceived blur of a
test edge (assessed by adjusting blur of a comparison edge
at an unadapted location) was veridical for test edges
whose blur was the same as the adapter but was shifted
away from the adapting level for test edges that were more
or less blurred, much like the shifts in perceived spatial
frequency that follow adaptation to gratings (Blakemore
& Sutton, 1969). Thus, local and global blur coding might
operate in different ways.

Blur constancy

Renormalization is a common (though not universal)
consequence of adaptation across many perceptual dimen-
sions, from color coding to face perception (Webster &
Leonard, 2008; Webster & MacLeod, in press). Why are
such adjustments so common? In color vision, adapting to
the ambient spectrum plays an important role in contribu-
ting to color constancy, discounting variations in the
stimulus (e.g., the current illumination) to maintain color
appearance (e.g., for the same surface; Brainard &
Wandell, 1992). These adjustments may be equally
important for discounting variations in the observer, for
example, over time as visual sensitivity changes with
development or aging (Werner & Schefrin, 1993) and over
space as spectral sensitivity changes with retinal location
(Webster & Leonard, 2008). Similarly, an important
functional consequence of renormalization in blur adapta-
tion may be to maintain stable perception of image focus
by removing variations caused by the environment or the
observer.
For example, the finding that adaptation promotes

constancy by causing blurred or sharpened images to
appear better focused has important clinical implications
for understanding the consequences of refractive errors
and their corrections. If visual coding did not adjust to the
observer’s optical imperfections, then there would be a
perpetual mismatch between perception and the world,
degrading both subjective image quality and visual
performance (even though the full perceptual consequen-
ces of this mismatch would not be revealed by standard
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measures of visual acuity). Moreover, if coding could not
readjust after optical correction, then observers might
experience the world as unnaturally and uncomfortably
sharpened (even if their acuity is necessarily improved).
An example of this mismatch has been reported in a
congenital cataract patient who did not undergo surgery
until middle age and continued to perceive the world as too
sharp even months after the correction (Fine, Smallman,
Doyle, & MacLeod, 2002). Most observers instead require
brief periods to acclimate to a refractive correction, and
this adjustment may depend fundamentally on the ability
of the visual system to renormalize spatial coding through
adaptation.

Appendix A

Other models of adaptation

Subtractive adaptation is not the only model of contrast
adaptation. Its merits are simplicity (just one free
parameter) and linearity (easy to implement; easy to think
about). It fits contrast-matching data tolerably well
(Georgeson, 1985) but is not suitable for describing
contrast discrimination. We therefore explored several
other functional forms for contrast adaptation, while
leaving the model filters and blur computation unchanged.
Using the same notation as Equation 2, a simple divisive
gain control for each spatial channel has the following
form:

Rðtest;adaptÞ ¼ rðtestÞ=f1þ m I rðadaptÞg: ðA1Þ

This model has pure multiplicative (divisive) scaling of
test responses driven by the stored response to the adapter.
This is analogous to Von Kries scaling in color vision, and
the influence of the adapter increases with m. Thus, we
found that with m = 2, the predictions for Webster et al.’s
(2002) experiment on focus judgment (Figure 11) were
very close to the dashed line marked “full normalization,”
but with m reduced to 0.13 the predictions (not shown)
were close to the experimental dataVpartial normal-
ization. This success is not general, however, because on
the more wide-ranging test conditions of Experiments 1
and 2, this gain control model fared less well. It predicted
an almost parallel shift in matches (Figure A1; partial
normalization again), unlike the test-blur-dependent shifts
observed.
A more elaborate contrast gain control (CGC) model in

the style of Foley and Chen (1997) was more successful:

R test;adaptð Þ ¼ rðtestÞp
zq þ rðtestÞq þ k I rðadaptÞq : ðA2Þ

When p j q G 1, Equation A2 incorporates a compressive
contrast response to the test image (a standard feature in
models of contrast discrimination), along with further
suppression by the adapter. This model was used to fit the
adapted contrast-matching data of Georgeson (1985)
using stimulus contrast in place of filter response r and
a very satisfying fit was obtained with p = 3, q = 2.6, z =
0.5, and k = 0.16. Then, with these values of p, q, and z,
Equation A2 was used to generate predictions for Experi-
ments 1 and 2. Adaptation strength k was adjusted to
obtain a very satisfactory fit for Experiment 2 shown in
Figure A2, with k = 0.2, and for Experiment 1 (not shown)
with k = 0.1. The same model gave a good fit to Webster

Figure A1. Predictions of a simple divisive gain control (Equation A1, with m = 0.10) applied to data of Experiment 2. See Appendix A for
details. This model shows a uniform, but partial, normalization of blur matches across all test blurs. Compared with Figures 10B and 10E,
the fit is poor when adapt and test blurs are very different.
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et al.’s (2002) data, with k = 0.26; the plot (not shown)
was almost identical to Figure 11 (solid curve).
The subtractive and CGC models differ mathematically

and do not produce the same form of contrast response
either before or after adaptation. However, there is a clear
commonality that explains why both are satisfactory in the
present context: after adaptation, the reduction in log
response level (R) is much larger at low test responses (r)
than when r is high. It is this trait that leads to differential
changes in log response of small- and large-scale channels
in response to blurred (or sharpened) images and, hence,
to changes in the response slope b (Figures 7 and 8) that is
used to encode blur. Because of response compression
(p j q G 1), the absolute slopes b are much smaller for the
CGC model, but with suitable k the changes in blur
bVwhen mapped back to the equivalent slopes !V
emerged as similar for the two models.
Thus, the CGC model (Equation A2) seems to be a

suitable substitute for the assumption of subtractive
adaptation. It has wider applications in the psychophysics
of contrast discrimination and masking but at the expense
of greater complexity and less transparency. It is impor-
tant to note that the idea of pre-adaptation that persists
during blank periods is just as vital here as before. When
pre-adaptation was removed, the predictions for Experi-
ment 1 exhibited “repulsion” for all three adapting
conditions and were just as bad as for the subtractive
model shown in Figure 9.
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