805 research outputs found

    Scaling in the Lattice Gas Model

    Get PDF
    A good quality scaling of the cluster size distributions is obtained for the Lattice Gas Model using the Fisher's ansatz for the scaling function. This scaling identifies a pseudo-critical line in the phase diagram of the model that spans the whole (subcritical to supercritical) density range. The independent cluster hypothesis of the Fisher approach is shown to describe correctly the thermodynamics of the lattice only far away from the critical point.Comment: 4 pages, 3 figure

    Information entropy in fragmenting systems

    Get PDF
    The possibility of facing critical phenomena in nuclear fragmentation is a topic of great interest. Different observables have been proposed to identify such a behavior, in particular, some related to the use of information entropy as a possible signal of critical behavior. In this work we critically examine some of the most widespread used ones comparing its performance in bond percolation and in the analysis of fragmenting Lennard Jones Drops.Comment: 3 pages, 3 figure

    Viability of vector-tensor theories of gravity

    Full text link
    We present a detailed study of the viability of general vector-tensor theories of gravity in the presence of an arbitrary temporal background vector field. We find that there are six different classes of theories which are indistinguishable from General Relativity by means of local gravity experiments. We study the propagation speeds of scalar, vector and tensor perturbations and obtain the conditions for classical stability of those models. We compute the energy density of the different modes and find the conditions for the absence of ghosts in the quantum theory. We conclude that the only theories which can pass all the viability conditions for arbitrary values of the background vector field are not only those of the pure Maxwell type, but also Maxwell theories supplemented with a (Lorentz type) gauge fixing term.Comment: 13 pages, 2 figures, 1 table. Final version to appear in JCA

    The Role of Surface Entropy in Statistical Emission of Massive Fragments from Equilibrated Nuclear Systems

    Full text link
    Statistical fragment emission from excited nuclear systems is studied within the framework of a schematic Fermi-gas model combined with Weisskopf's detailed balance approach. The formalism considers thermal expansion of finite nuclear systems and pays special attention to the role of the diffuse surface region in the decay of hot equilibrated systems. It is found that with increasing excitation energy, effects of surface entropy lead to a systematic and significant reduction of effective emission barriers for fragments and, eventually, to the vanishing of these barriers. The formalism provides a natural explanation for the occurrence of negative nuclear heat capacities reported in the literature. It also accounts for the observed linearity of pseudo-Arrhenius plots of the logarithm of the fragment emission probability {\it versus} the inverse square-root of the excitation energy, but does not predict true Arrhenius behavior of these emission probabilities

    Bioaccessibility performance data for fifty-seven elements in guidance material BGS 102

    Get PDF
    BGS 102, a guidance material for bioaccessible arsenic (As) and lead (Pb), was produced during validation of the in vitro Unified Bioaccessibility Method (UBM). This paper reports a compilation of reproducible bioaccessible guidance values for fifty-five additional elements in BGS 102, providing guidance for analysts to broaden the scope of UBM analyses for a wider range of elements based on data collected over an average of 60 separate analytical batches per element. Data are presented in categories for both gastric (STOM) and gastrointestinal (STOM + INT) extraction phases, where reproducibility, measured as relative standard deviation (RSD) was; ≤ 10% RSD for 27 elements (Mg, Al, Si, P, Ca, Cr, Mn, Co, Ni, As, Rb, Sr, Y, Ba, La, Ce, Pr, Nd, Sm, Eu, Tb, Gd, Dy, Ho, Er, Tm, Yb); between 10 and 20% RSD for 10 elements (Li, K, V, Fe, Cu, Zn, Cd, Lu, Pb, U); and ≥ 20% RSD for 19 elements in the gastric phase (Be, B, S, Ti, Ga, Se, Zr, Nb, Mo, Ag, Sn, Sb, Cs, Hf, Ta, W, Tl, Bi, Th). Two elements (Mg, Rb) met the ≤ 10% RSD criteria in the UBM gastrointestinal extraction phase due to the alkaline conditions of this phase precipitating out the majority of determinands. Certain elements, including Na, K, Zn and Se, were found to be a significant component of the extraction fluids with proportionally higher concentrations compared to the guidance material. Bioaccessible fractions (%BAF) were also calculated, but were found to be a less reproducible format for confirming the accuracy of measurements. The low concentration of some elements of interest in BGS 102, such as antimony (Sb), justifies the preparation of an alternative certified reference material (CRM). This paper presents an opportunity to broaden the scope of the UBM method to address food security issues (e.g. Fe and Zn micronutrient deficiencies) and contributions to dietary intake from extraneous dust or soil through evidence of the analytical possibilities and current limitations requiring further investigation

    Caloric Curves and Nuclear Expansion

    Get PDF
    Nuclear caloric curves have been analyzed using an expanding Fermi gas hypothesis to extract average nuclear densities. In this approach the observed flattening of the caloric curves reflects progressively increasing expansion with increasing excitation energy. This expansion results in a corresponding decrease in the density and Fermi energy of the excited system. For nuclei of medium to heavy mass apparent densities ~ 0.4 rho_0 are reached at the higher excitation energies.Comment: 4 pages, 3 figure

    Weak convergence of finite element approximations of linear stochastic evolution equations with additive noise II. Fully discrete schemes

    Get PDF
    We present an abstract framework for analyzing the weak error of fully discrete approximation schemes for linear evolution equations driven by additive Gaussian noise. First, an abstract representation formula is derived for sufficiently smooth test functions. The formula is then applied to the wave equation, where the spatial approximation is done via the standard continuous finite element method and the time discretization via an I-stable rational approximation to the exponential function. It is found that the rate of weak convergence is twice that of strong convergence. Furthermore, in contrast to the parabolic case, higher order schemes in time, such as the Crank-Nicolson scheme, are worthwhile to use if the solution is not very regular. Finally we apply the theory to parabolic equations and detail a weak error estimate for the linearized Cahn-Hilliard-Cook equation as well as comment on the stochastic heat equation

    Model of multifragmentation, Equation of State and phase transition

    Full text link
    We consider a soluble model of multifragmentation which is similar in spirit to many models which have been used to fit intermediate energy heavy ion collision data. We draw a p-V diagram for the model and compare with a p-V diagram obtained from a mean-field theory. We investigate the question of chemical instability in the multifragmentation model. Phase transitions in the model are discussed.Comment: Revtex, 9 pages including 6 figures: some change in the text and Fig.

    Heritability of specific language impairment depends on diagnostic criteria

    Get PDF
    Heritability estimates for specific language impairment (SLI) have been inconsistent. Four twin studies reported heritability of 0.5 or more, but a recent report from the Twins Early Development Study found negligible genetic influence in 4-year-olds. We considered whether the method of ascertainment influenced results and found substantially higher heritability if SLI was defined in terms of referral to speech and language pathology services than if defined by language test scores. Further analysis showed that presence of speech difficulties played a major role in determining whether a child had contact with services. Childhood language disorders that are identified by population screening are likely to have a different phenotype and different etiology from clinically referred cases. Genetic studies are more likely to find high heritability if they focus on cases who have speech difficulties and who have been referred for intervention
    • …
    corecore