3,192 research outputs found

    Sonoluminescing air bubbles rectify argon

    Get PDF
    The dynamics of single bubble sonoluminescence (SBSL) strongly depends on the percentage of inert gas within the bubble. We propose a theory for this dependence, based on a combination of principles from sonochemistry and hydrodynamic stability. The nitrogen and oxygen dissociation and subsequent reaction to water soluble gases implies that strongly forced air bubbles eventually consist of pure argon. Thus it is the partial argon (or any other inert gas) pressure which is relevant for stability. The theory provides quantitative explanations for many aspects of SBSL.Comment: 4 page

    Ralstonia pickettii—innocent bystander or a potential threat?

    Get PDF
    ABSTRACTRalstonia pickettii can be isolated from water, soil and plants, and can also form part of the commensal flora of the oral cavity and the upper respiratory tract of healthy individuals. R. pickettii is an infrequent pathogen, but can cause infections, mainly of the respiratory tract, in immunocompromised and cystic fibrosis patients. It can be isolated from a variety of clinical specimens, including sputum, blood, wound infections, urine, ear and nose swabs, and cerebrospinal fluid. Resistance can occur to ciprofloxacin, trimethoprim–sulphamethoxazole, piperacillin–tazobactam, imipenem–cilastatin and ceftazidime. Early detection of R. pickettii allows prompt appropriate antimicrobial therapy with a favourable outcome, but removal of infected indwelling devices is mandatory

    Dynamics of the Light-Cone Zero Modes: Theta Vacuum of the Massive Schwinger Model

    Full text link
    The massive Schwinger model is quantized on the light cone with great care on the bosonic zero modes by putting the system in a finite (light-cone) spatial box. The zero mode of AA_{-} survives Dirac's procedure for the constrained system as a dynamical degree of freedom. After regularization and quantization, we show that the physical space condition is consistently imposed and relates the fermion Fock states to the zero mode of the gauge field. The vacuum is obtained by solving a Schr\"odinger equation in a periodic potential, so that the theta is understood as the Bloch momentum. We also construct a one-meson state in the fermion-antifermion sector and obtained the Schr\"odinger equation for it.Comment: 23 pages, RevTex, no figure

    Variational Mass Perturbation Theory for Light-Front Bound-State Equations

    Get PDF
    We investigate the mesonic light-front bound-state equations of the 't Hooft and Schwinger model in the two-particle, i.e. valence sector, for small fermion mass. We perform a high precision determination of the mass and light-cone wave function of the lowest lying meson by combining fermion mass perturbation theory with a variational approach. All calculations are done entirely in the fermionic representation without using any bosonization scheme. In a step-by-step procedure we enlarge the space of variational parameters. For the first two steps, the results are obtained analytically. Beyond that we use computer algebraic and numerical methods. We achieve good convergence so that the calculation of the meson mass squared can be extended to third order in the fermion mass. Within the numerical treatment we include higher Fock states up to six particles. Our results are consistent with all previous numerical investigations, in particular lattice calculations. For the massive Schwinger model, we find a small discrepancy (less than 2 percent) in comparison with known bosonization results. Possible resolutions of this discrepancy are discussed.Comment: some points clarified, representation straightened, to appear in Phys. Rev. D, 31 pages, Latex, REVTeX, epsfig, 3 postscript figures include

    Zero Mode and Symmetry Breaking on the Light Front

    Full text link
    We study the zero mode and the spontaneous symmetry breaking on the light front (LF). We use the discretized light-cone quantization (DLCQ) of Maskawa-Yamawaki to treat the zero mode in a clean separation from all other modes. It is then shown that the Nambu-Goldstone (NG) phase can be realized on the trivial LF vacuum only when an explicit symmetry-breaking mass of the NG boson mπm_{\pi} is introduced. The NG-boson zero mode integrated over the LF must exhibit singular behavior 1/mπ2 \sim 1/m_{\pi}^2 in the symmetric limit mπ0m_{\pi}\to 0, which implies that current conservation is violated at zero mode, or equivalently the LF charge is not conserved even in the symmetric limit. We demonstrate this peculiarity in a concrete model, the linear sigma model, where the role of zero-mode constraint is clarified. We further compare our result with the continuum theory. It is shown that in the continuum theory it is difficult to remove the zero mode which is not a single mode with measure zero but the accumulating point causing uncontrollable infrared singularity. A possible way out within the continuum theory is also suggested based on the ``ν\nu theory''. We finally discuss another problem of the zero mode in the continuum theory, i.e., no-go theorem of Nakanishi-Yamawaki on the non-existence of LF quantum field theory within the framework of Wightman axioms, which remains to be a challenge for DLCQ, ``ν\nu theory'' or any other framework of LF theory.Comment: 60 pages, the final section has been expanded. A few minor corrections; version to be published in Phys. Rev.

    RPA for Light-Front Hamiltonian Field Theory

    Get PDF
    A self-consistent random phase approximation (RPA) is proposed as an effective Hamiltonian method in Light-Front Field Theory (LFFT). We apply the general idea to the light-front massive Schwinger model to obtain a new bound state equation and solve it numerically.Comment: A major revision in presentation, while the results essentially unchanged. 2 figs. replaced, 1 fig. added, some parts of Sec. V moved to Sec. IV, some wording changed, typos correcte

    Artificial neural network analysis of bone quality DXA parameters response to teriparatide in fractured osteoporotic patients

    Get PDF
    Teriparatide is a bone-forming therapy for osteoporosis that increases bone quantity and texture, with uncertain action on bone geometry. No data are available regarding its influence on bone strain. To investigate teriparatide action on parameters of bone quantity and quality and on Bone Strain Index (BSI), also derived from DXA lumbar scan, based on the mathematical model finite element method. Forty osteoporotic patients with fractures were studied before and after two years of daily subcutaneous 20 mcg of teriparatide with dual X-ray photon absorptiometry to assess bone mineral density (BMD), hip structural analysis (HSA), trabecular bone score (TBS), BSI. Spine deformity index (SDI) was calculated from spine X-ray. Shapiro-Wilks, Wilcoxon and Student's t test were used for classical statistical analysis. Auto Contractive Map was used for Artificial Neural Network Analysis (ANNs). In the entire population, the ameliorations after therapy regarded BSI (-13.9%), TBS (5.08%), BMD (8.36%). HSA parameters of femoral shaft showed a worsening. Dividing patients into responders (BMD increase >10%) and non-responders, the first presented TBS and BSI ameliorations (11.87% and -25.46%, respectively). Non-responders presented an amelioration of BSI only, but less than in the other subgroup (-6.57%). ANNs maps reflect the mentioned bone quality improvements. Teriparatide appears to ameliorate not only BMD and TBS, but also BSI, suggesting an increase of bone strength that may explain the known reduction in fracture risk, not simply justified by BMD increase. BSI appears to be a sensitive index of TPD effect. ANNs appears to be a valid tool to investigate complex clinical systems

    A New Method to Estimate the Noise in Financial Correlation Matrices

    Full text link
    Financial correlation matrices measure the unsystematic correlations between stocks. Such information is important for risk management. The correlation matrices are known to be ``noise dressed''. We develop a new and alternative method to estimate this noise. To this end, we simulate certain time series and random matrices which can model financial correlations. With our approach, different correlation structures buried under this noise can be detected. Moreover, we introduce a measure for the relation between noise and correlations. Our method is based on a power mapping which efficiently suppresses the noise. Neither further data processing nor additional input is needed.Comment: 25 pages, 8 figure
    corecore