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Abstract

Teriparatide is a bone-forming therapy for osteoporosis that increases bone quantity and

texture, with uncertain action on bone geometry. No data are available regarding its influ-

ence on bone strain. To investigate teriparatide action on parameters of bone quantity and

quality and on Bone Strain Index (BSI), also derived from DXA lumbar scan, based on the

mathematical model finite element method. Forty osteoporotic patients with fractures were

studied before and after two years of daily subcutaneous 20 mcg of teriparatide with dual X-

ray photon absorptiometry to assess bone mineral density (BMD), hip structural analysis

(HSA), trabecular bone score (TBS), BSI. Spine deformity index (SDI) was calculated from

spine X-ray. Shapiro-Wilks, Wilcoxon and Student’s t test were used for classical statistical

analysis. Auto Contractive Map was used for Artificial Neural Network Analysis (ANNs). In

the entire population, the ameliorations after therapy regarded BSI (-13.9%), TBS (5.08%),

BMD (8.36%). HSA parameters of femoral shaft showed a worsening. Dividing patients into

responders (BMD increase >10%) and non-responders, the first presented TBS and BSI

ameliorations (11.87% and -25.46%, respectively). Non-responders presented an ameliora-

tion of BSI only, but less than in the other subgroup (-6.57%). ANNs maps reflect the men-

tioned bone quality improvements. Teriparatide appears to ameliorate not only BMD and

TBS, but also BSI, suggesting an increase of bone strength that may explain the known

reduction in fracture risk, not simply justified by BMD increase. BSI appears to be a sensitive

index of TPD effect. ANNs appears to be a valid tool to investigate complex clinical systems.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0229820 March 11, 2020 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Messina C, Piodi LP, Grossi E, Eller-

Vainicher C, Bianchi ML, Ortolani S, et al. (2020)

Artificial neural network analysis of bone quality

DXA parameters response to teriparatide in

fractured osteoporotic patients. PLoS ONE 15(3):

e0229820. https://doi.org/10.1371/journal.

pone.0229820

Editor: Marı́a Angeles Pérez, Universidad de
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Introduction

Osteoporosis affects more than 75 million people in the United States, Europe and Japan. It

causes more than 8.9 million fractures annually worldwide, of which more than 4.5 million

occur in America and Europe. The lifetime risk of a wrist, hip or vertebral fracture has been

estimated to be in the order of 30% to 40% in developed countries [1].

The diagnosis of osteoporosis is based on the measurement of Bone Mineral Density

(BMD) with Dual X-ray Absorptiometry (DXA) [2]. Many studies indicate that the risk of frac-

ture doubles for each standard deviation reduction in BMD [3]. However, assessment of BMD

does not completely detect fracture risk. In fact, while the BMD at the spine and at the hip is

directly related to the risk of fracture [4], there is an overlap of BMD in patients with or without

fractures [5]. This poses a problem for the clinical assessment of fracture risk with BMD alone

for its lack of sensitivity [6]. The use of risk factors improves the sensitivity of the assessment

[7], but there is a need of further factors in addition to BMD that can predict fracture risk, like

the evaluation of bone micro-architectural structure [8]. Its direct examination can be done by

an invasive procedure like bone biopsy or indirectly by some non-invasive procedures, like

high-resolution peripheral quantitative computed tomography or magnetic resonance [9,10].

These procedures are, however, expensive or with high radiation dose and therefore not suitable

for screening. So, there is a need of a simple method for bone micro-architecture and texture

analysis. The Trabecular Bone Score (TBS) is a tool correlated with hystomorphometric bone

parameters that can be performed during a DXA scan [11]. The TBS evaluates local variations

in gray levels from the DXA image of the lumbar spine. It uses experimental variograms of 2D

projections images and can discriminate between samples with similar BMD but different 3D

trabecular micro-architecture. A high TBS value reflects a good vertebral microarchitectural tex-

ture, and vice versa. Previous studies showed that the TBS can predict the fracture risk partially

independently from BMD [12,13]. Other studies focused on the action of therapies for osteopo-

rosis on TBS. It has been shown that TBS ameliorates less with antiresorptive drugs like bisphos-

phonates than with bone forming agents like teriparatide [14,15].

Another recently developed bone structural parameter is the lumbar Bone Strain Index

(BSI), a stress and deformation vertebral parameter derived from a finite element analysis of

the lumbar DXA scan [16,17], that is based on a mathematical model called Finite Element

Method (FEM) [18].

BSI calculation is obtained using a constant strain triangular mesh, with the load applied to

upper surface and the constraints to the lower. The load applied to the vertebra is specific for

each patient and is based on relations between lumbar forces and patient’s weight and height

provided by Han study [19]. The mechanical properties of the model are defined in a stiffness

matrix assigning elastic modulus depending on local BMD according to Morgan’s equations

[20]. BSI represents the average strain inside the vertebra, obtained with a linear elastic analysis

and with the assumption that a higher strain level (high BSI) indicates a greater risk condition.

Recent clinical studies found a usefulness of BSI in identifying the osteoporotic patient’s sub-

group particularly prone to fragility fractures [21] and to characterize young patients affected

by secondary osteoporosis [22,23]. BSI increases linearly with stress and vertebral deformation,

so its reduction expresses an amelioration of bone status.

Hip Structural Analysis (HSA) is a DXA-derived tool that obtains transverse geometry

images acquired by densitometric scans. Its main structural parameters are the area of bone

inside the cross sectional area (CSA), the cross-sectional moment of inertia (CSMI) with the

section modulus (SECT_MOD) and the buckling ratio (BR), which are correlated to the maxi-

mal axial, bending and torsion forces [24]. Hip geometry, as well as hip BMD, has been shown

to have an independent correlation with the risk of hip fracture [2,25].
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Teriparatide (TPD, 1–34 recombinant human parathyroid hormone) is approved for the

treatment of primary and glucocorticoid-induced osteoporosis in patients with high fracture

risk [26,27]. A significant increase in TBS and spine BMD was reached with a two years treat-

ment with TPD in post-menopausal women [27,28]. Other studies with TPD demonstrated a

significant increase in proximal femur BMD, in a geometric parameter as average cortical

thickness, and in the outer- and endo-cortical diameters [29]. There was also an increase of

SEC_MOD and a reduction of BR [30–32]. Another work found that TBS significantly

increased with TPD, but did not significantly change with alendronate in glucocorticoid

induced osteoporosis [33].

Osteoporosis is a multi-factorial pathology, characterized by plenty of variables, which are

connected in a complex way that is difficult to investigate with classical standard statistical

methods. To approach the complexity of the problem we have employed a new methodology

based on an Artificial Neural Network (ANNs). ANNs are computational adaptive systems

inspired by the functioning processes of the human brain particularly adapted to solve non-

linear problems and to discover subtle trends and associations among variables (32,33). Based

on their learning through an adaptive way (i.e., extracting from the available data the informa-

tion needed to achieve a specific aim and to generalize the acquired knowledge), the ANNs

appear to be a powerful tool for data analysis in the presence of relatively small samples.

In this paper we have used a special kind of ANN architecture, the Auto Contractive Map

(AutoCM)[34,35]. This method of data mining is a new analytical process able to create a

semantic connectivity map in which non-linear associations are preserved, connections

schemes are explicated and the complex dynamics of adaptive interactions is captured. The

AutoCM approach has been applied in recent years to the analysis of a growing number of dif-

ferent clinical diseases, demonstrating its value in identifying significant associations between

clinical, serological and novel “omics” biomarkers [21,36–38]. Therefore, ANNs could be a

useful way to better understand the relationships between the numerous different variables

that play a role in osteoporosis. So, the aim of this study was to evaluate both with standard sta-

tistical and ANNs analysis the DXA bone quantity and quality parameters before and after

treatment with TPD in fractured osteoporotic patients.

Patients and methods

Patients

In this retrospective study 40 osteoporotic patients (29 women and 11 men) with multiple ver-

tebral osteoporotic fractures and treated with TPD were analyzed. All the women were in post-

menopause. The patients were followed at the “IRCCS Fondazione Ca’ Granda Ospedale Mag-

giore Policlinico”, Milan, Italy and at the “Istituto Auxologico Italiano IRCCS”, Milan, Italy.

All patients underwent a clinical examination, a spine X-ray exam to assess the spine defor-

mity index (SDI) [39,40], and a DXA exam to quantify hip and lumbar BMD, lumbar spine

TBS and BSI, and HSA. Patients were treated with daily subcutaneous 20 mcg of TPD (Forsteo,

Eli Lilly Company, Indianapolis, IN, USA) for 2 years. At the end of the treatment all patients

were assessed again with clinical examination, DXA and spine X-ray.

All the patients signed a written informed consent and local Ethical Committee approval

was obtained (Ethics Committee: Milano Area 2. Protocol N 2.0 BQ. 265_2017, 13th June

2017).

Methods

DXA data acquisition. Bone status was investigated with DXA (Hologic Discovery A,

Waltham, MA, USA, software version 13.3.0.1), according to the International Society for
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Clinical Densitometry (ISCD) guide lines [41]. All patients underwent two scans, a L1-L4 spine

scan and a hip scan. Fractured vertebrae were excluded from the analysis. TBS and BSI were

automatically obtained from the spine scans, while HSA was automatically obtained from the

hip DXA scan in three different regions: Narrow Neck (NN), Intertrochanteric Region (IT) and

Femoral Shaft (FS). Finally, Hip Axis Length (HAL, mm) and Shaft Neck Angle (degrees) were

also automatically measured from the hip scan. Beside BMD (g/cm2), in every hip region the

following parameters were considered: CSA (cm2), CSMI (cm4), BR, width (mm), and the sec-

tion modulus (SECT_MOD, cm3), which are related to axial and torsion strength. SECT_MOD

is derived from Cross Sectional Moment of Inertia (CSMI), that measures the torsional and

bending strengths contribution in relationship to the distance from the center to the outer corti-

cal of the considered section. BR is the ratio between the radius (the maximum distance between

the center of the bone section and its outer cortical) and the mean thickness of the cortical. It

provides a compressive and torsional loads cortical stability index.

Other data acquisition. In order to investigate the presence of vertebral fractures all

patients were imaged with antero-posterior and lateral X-ray of the spine at the beginning and

at the end of the pharmacological treatment. Finally, the SDI before and after therapy was cal-

culated using the semi-quantitative approach [42,43].

Statistics. We constructed a semantic connectivity map through Auto-CM system

(Semeion), a fourth generation ANNs, to offer some insight regarding the complex biological

connections between variables on study. The system highlights the natural links among vari-

ables with a graph based on minimum spanning tree theory, where distances among variables

reflect the weights of the ANN after a successful training phase. The Auto-Contractive Map

(Auto-CM) was born as a new ANNs and was designed at the Semeion Research Center

[44,45]. The Auto-CM system finds, by a specific learning algorithm, a square matrix of

weighted connections among the variables of any dataset. This matrix of connections presents

many suitable features: a) non linear associations among variables are preserved; b) connec-

tions schemes among clusters of variables are captured; c) complex similarities among vari-

ables become evident. Once an Auto-CM weights matrix is obtained, it is then filtered by a

minimum spanning tree (MST) algorithm generating a graph whose biological evidence has

already been tested in the medical field [3–6]. The ultimate goal of this data mining model is to

discover hidden trends and associations among variables, since this algorithm is able to create

a semantic connectivity map in which non linear associations are preserved and explicit con-

nection schemes are described. This approach shows the map of relevant connections between

and among variables and the principal hubs of the system. Hubs can be defined as variables

with the maximum amount of connections in the map. From a mathematical point of view the

specificity of Auto-CM algorithm is to minimize a complex cost function with respect to the

traditional ones.

Traditional minimization cost function:

E ¼ Min
�
XN

i

XN

j
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q

uq
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N ¼ Number of Variables ðColumnsÞ;

M ¼ Number of Patterns ðRowsÞ:

Comparing the two cost functions it is evident how the traditional minimization includes

only second order effects, while the Auto-CM considers also a third order effect. Practically,

this means that the Auto-CM algorithm is able to discover variable similarities completely

embedded in the dataset and invisible to the other classical tools. This approach describes a

context which is typical of living systems, where a continuous time dependent complex change

in the variable value is present. Auto-CM can also learn under difficult circumstances such as

when the connections of the main diagonal of the second connections matrix are removed.

When the learning process is organized in this way, Auto-CM identifies specific relationships

between each variable and all others. Consequently, from an experimental point of view, it

appears that the ranking of its connections matrix is equal to the ranking of the joint probabil-

ity between each variable and the others. Auto-CM requires a training phase necessary to learn

how variables are interconnected. The learning algorithm of CM can be summarised in four

orderly steps: a) signal transfer from the input into the hidden layer; b) adaptation of the con-

nections value between the input layer and the hidden layer; c) signal transfer from the hidden

layer into the output layer; d) adaptation of the connections value between the hidden layer

and the output layer. The MST represents what could called the ‘nervous system’ of any data-

set. In fact, summing up all the connection strengths among all the variables, we get the total

energy of that system. The MST selects only the connections that minimize this energy, i.e. the

only ones that are really necessary to keep the system coherent. Consequently, all the links

included in the MST are fundamental, but, on the contrary, not every ‘fundamental’ link of the

dataset need to be in the MST. Such limit is intrinsic to the nature of MST itself. Every link

that gives rise to a cycle into the graph, that destroys the graph’s ‘treeness’, is eliminated, what-

ever its strength and meaningfulness. To fix this shortcoming and to better capture the intrin-

sic complexity of a dataset, it is necessary to add more links to the MST, according to two

criteria: (1) the new links have to be relevant from a quantitative point of view; (2) the new

links have to be able to generate new cyclic regular microstructures, from a qualitative point of

view. The additional links superimposed to MST graph generate a Maximally Regular Graph

(MRG).

MRG is the graph whose hubness function attains the highest value among all the graphs

generated by adding back to the original MST, one by one, the connections previously skipped

during the computation of the MST itself. In other words, starting from the MST, the MRG,

presenting the highest number of regular microstructures, highlights the most important con-

nections of the dataset. The resulting “diamond” expresses the complexity core of the system

and, in our specific case, the core of the syndrome.

AutoCM maps and minimum spanning tree have been applied to the entire population of

the study and also in two subgroups, “responders” and “non-responders” to the therapy, estab-

lished on the basis of a BMD criterium taken from the TPD pivotal registration trial [27], in

which the cut-off value of response was a 10% increase in lumbar spine BMD after treatment.

On the two groups, the Maximally Regular Graph (MRG) algorithm was then applied to the

Spanning Tree. This algorithm introduces new and more complex connections between vari-

ables not directly related in the spanning tree [34]. The resulting four maps show the relations

of the studied variables in the “responders” before (PreR) and after (PostR) therapy and the

same in the “non-responders” (preNR and PostNR, respectively).

PLOS ONE ANNs and DXA indexes with TPD osteoporosis treatment

PLOS ONE | https://doi.org/10.1371/journal.pone.0229820 March 11, 2020 5 / 17

https://doi.org/10.1371/journal.pone.0229820


Regarding the classic statistical analysis, we first assessed the normality of data using the Sha-

piro-Wilks Test, and when the assumption was met (p< 0.05), data were presented as mean

with standard deviation. When normality was not satisfied, variables were presented as median

with interquartile range (IQR). The comparison of data before and after the treatment was per-

formed for all patients as well as for the subgroups (responders and non-responders). Student’s

t-test was used for data with a normal distribution, while for non-parametric data the Wilcoxon

signed rank test was used. A p value lower than 0.05 was considered statistically significant.

Results

In the entire population the mean age at the enrollment was 70 years ± 10.6 SD (range: 43–91).

Patients’ BMI before treatment was 25.9 ± 4.09, while after treatment it was 26.1 ± 4.6 kg/m2

(p = 0.542). Table 1 shows mean, median, SD, IQR, variation percentage and statistical significance

values of SDI and DXA parameters in the entire population, before and after TPD treatment.

Bone quality parameters BSI and TBS presented an amelioration after treatment, with a vari-

ation of -13.9% for BSI and 5.08% for TBS. BMD, which is the bone quantity parameter, showed

a significant increase of 8.36%. Hip geometry indexes of femoral shaft, CSA, SECT_MOD and

BR, worsened after treatment (-0.98%, -2.33%, 1.62%, respectively), while its BMD ameliorated

(0.23%). In our population 14 patients were “responders” and 26 were “non-responders”. Inter-

estingly, the percentage of gender composition was different between the two groups. In fact,

while “non responder” group was mainly composed by women (21/26, about 80%), the

“responder” group was quite balanced between males and females (8/14 females, about 55%).

When considering only the “responder” population, BMD showed a statistically significant

increase of +20.04%, while TBS and BSI showed a variation of +11.87% and -25.46% respec-

tively, which were both statistically significant. The only HSA parameter that showed a signifi-

cant variation was FS_CSMI (p = 0.01). On the contrary, when considering the “non-

responder” population, BSI was the only bone quality parameter showing a statistically signifi-

cant variation of -6.75%; neither BMD nor TBS showed a significant change. For HSA, a statisti-

cally significant change was found for all the FS parameters (CSMI, SECT_MOD and BR).

Table 2 shows mean/median values and the significance of the variation before and after

therapy of SDI and of the DXA parameters in the “responders” to TPD treatment.

Table 3 shows mean/median values and the significance of the variation before and after

TPD treatment of SDI and the DXA parameters in the “non-responders”. The two groups,

“responders” and “non-responders”, share the significant modification of only two variables:

BSI and FS_CSMI.

Fig 1 shows the connectivity map of all variables linked to the densitometric status before

TPD treatment, showing a spread around two nodes, FS_BMD and HAL, that appear to be

hubs. The distribution of nodes and their connections after therapy are showed in Fig 2, where

NN_SECT_MOD, correlating with bending and torsion resistance, gains a central position.

Fig 3A and 3B show the ANNs maps of the “responders” before and after therapy, where the

connections between variables increase after TPD, and FS_CSMI becomes the central hub. Fig

4A and 4B are the “non-responders” maps before and after treatment, showing a noticeable

paucity of interconnections, particularly before therapy. FS_CSMI looses its hub position in

favor of FS_CSA, index related to axial strength.

Discussion

In this study a population of patients with osteoporosis’ fragility fractures treated with subcuta-

neous daily injections of TPD, an osteoinductive agent known to ameliorate both mineral den-

sity and bone structure, was investigated before and after therapy. In the entire population
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Table 1. SDI and DXA parameters of the entire population (40 patients) before and after TPD therapy.

Mean/median SD/IQR Variation % p-value

NN_BMD Before TPD 0.740 0.112 2.92% 0.343

After TPD 0.761 0.205

NN_CSA Before TPD 2.347 0.401 1.62% 0.312

After TPD 2.385 0.454

NN_CSMI˚ Before TPD 2.197 1.112 1.87% 0.823

After TPD 2.239 1.147

NN_WIDTH Before TPD 3.345 0.352 0.27% 0.72

After TPD 3.354 0.384

NN_SECT_MOD Before TPD 1.213 0.302 1.33% 0.426

After TPD 1.229 0.333

NN_BR˚ Before TPD 13.480 3.930 -4.67% 0.214

After TPD 12.851 4.315

IT_BMD Before TPD 0.742 0.147 1.57% 0.374

After TPD 0.753 0.154

IT_CSA Before TPD 4.125 0.943 1.65% 0.365

After TPD 4.193 1.008

IT_CSMI˚ Before TPD 11.548 6.546 0.84% 0.635

After TPD 11.645 6.863

IT_WIDTH Before TPD 5.847 0.716 0.02% 0.985

After TPD 5.848 0.734

IT_SECT_MOD˚ Before TPD 3.626 1.580 -2.32% 0.302

After TPD 3.541 1.832

IT_BR Before TPD 11.439 3.549 -3.25% 0.79

After TPD 11.068 3.578

FS_BMD Before TPD 1.262 0.349 0.23% 0.03�

After TPD 1.265 0.358

FS_CSA Before TPD 3.624 1.239 -0.98% 0.034�

After TPD 3.588 1.282

FS_CSMI Before TPD 3.568 1.514 -1.27% 0.125

After TPD 3.522 1.835

FS_WIDTH Before TPD 3.076 0.269 0.26% 0.446

After TPD 3.084 0.285

FS_SECT_MOD Before TPD 2.256 0.840 -2.33% 0.005�

After TPD 2.203 0.855

FS_BR˚ Before TPD 3.558 1.285 1.62% 0.014�

After TPD 3.615 1.190

SHAFT_NECK_ANGLE Before TPD 128.895 5.141 0.25% 0.545

After TPD 129.222 5.159

SDI˚ Before TPD 8.000 6.000 12.50% 0.068

After TPD 9.000 6.000

HAL Before TPD 107.750 10.473 0.32% 0.432

After TPD 108.100 10.397

BMD Before TPD 0.745 0.143 8.36% <0.001�

After TPD 0.807 0.165

TBS˚ Before TPD 1.123 0.159 5.08% 0.019�

After TPD 1.180 0.158

(Continued)
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studied both TBS and BSI, indexes of bone texture and strain, respectively, showed a signifi-

cant amelioration, as well as BMD. For the last it is an expected and well-known result, while

there are only few data [46,47] about TBS, confirming its increase after TPD as reported in

other previous works [48]. As regards BSI, no data are available about its response to osteopo-

rosis’ treatment. In our study the value of BSI decreased significantly after TPD (-13.9%), and

this finding is compatible with an increase in bone strength. In fact, the amelioration of bone

structure and bone strength related to the vertebra increases the ability of the vertebra to sup-

port an external load, and thus reduces the internal strain. Being BSI the representation of the

internal strain of the vertebra, a lower value indicates a lower stress and strain level affecting

the vertebra, and consequently a lower fracture risk.

Considering the two groups in which the patients were divided, we notice that the only sig-

nificant difference in “non-responders” was the amelioration of BSI. Of note, differently from

“non responders”, the “responders” group was balanced in the gender composition with

almost the same percentage of both sexes. Thus, gender may have a certain specific impact on

BSI variations, despite this result needs to be confirmed in larger samples.

Regarding HSA parameters, significant variations were shown only at the femoral shaft, but

they are of very small absolute entity and so of doubtful clinical relevance. Differently to our

results, previous studies conducted in a larger set of patients did not found effects of TPD on

femoral shaft [30,32], but only on the other femoral regions. Overall, the significant variations

of both quantitative (BMD) and qualitative (TBS, BSI, femoral shaft HSA) DXA derived

parameters after TPD treatment are consistent with an improvement of bone resistance to

mechanical stresses[49,50].

The great number of variables considered in our study can complicate the comprehension

of the meaning of the correlations we found, and for this reason we also used an innovative

approach to statistical analysis, which is commonly used in artificial intelligence systems,

namely the neural network analysis (ANNs) with a potent data mining system. We can define

data mining as Data mining extraction of interesting (non-trivial, implicit, previously

unknown and potentially useful) patterns or knowledge from a huge amount of data. In medi-

cal field data mining represents a relatively new philosophy emerging with the advent of geno-

mic and functional data. The available techniques offered by classical statistics like Principal

Component Analysis of Hierarchical clustering suffer from a number of drawbacks due to the

complexity of possible interactions between risk factors, their non-linear influence on the dis-

ease occurrence and the considerable stochastic components. The more common algorithms

of linear projections of variables require generally a Gaussian distribution of data and have

limited power when the relationships between variables are non linear. Application of these

methods may loose important informations, and establish precise associations among variables

having only the contiguity as a known element is difficult. Another possible limitation of cur-

rently used statistical methods is that mapping is generally based on a specific kind of “dis-

tance” among variables (e.g. Euclidean, City block, correlation, etc), and gives origin to a

“static” projection of possible associations. In other words, the intrinsic dynamics due to active

Table 1. (Continued)

Mean/median SD/IQR Variation % p-value

BSI Before TPD 2.472 0.691 -13.90% <0.001�

After TPD 2.129 0.666

˚ = non-parametric distribution, with values presented as median with interquartile range (IQR) and compared with Wilcoxon signed rank test

� = statistically significant difference (p<0.05).

https://doi.org/10.1371/journal.pone.0229820.t001
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Table 2. SDI and DXA parameters of the “responders” (14 patients; 8 females and 6 males) before and after TPD therapy.

Mean/median SD/IQR Variation % p-value

NN_BMD Before TPD 0.706 0.103 3.56% 0.411

After TPD 0.732 0.164

NN_CSA Before TPD 2.352 0.361 5.32% 0.169

After TPD 2.477 0.518

NN_CSMI Before TPD 2.534 0.724 5.97% 0.062

After TPD 2.686 0.872

NN_WIDTH Before TPD 3.513 0.376 2.28% 0.093

After TPD 3.593 0.389

NN_SECT_MOD Before TPD 1.242 0.263 5.39% 0.146

After TPD 1.309 0.353

NN_BR˚ Before TPD 14.731 2.821 2.69% 0.972

After TPD 15.127 7.245

IT_BMD˚ Before TPD 0.691 0.130 6.02% 0.196

After TPD 0.732 0.140

IT_CSA Before TPD 4.109 0.877 6.49% 0.128

After TPD 4.376 1.017

IT_CSMI Before TPD 15.269 6.191 -6.00% 0.184

After TPD 14.353 8.014

IT_WIDTH Before TPD 6.251 0.791 0.21% 0.822

After TPD 6.264 0.810

IT_SECT_MOD Before TPD 3.869 1.066 3.28% 0.425

After TPD 3.996 1.080

IT_BR Before TPD 12.422 2.337 -4.55% 0.251

After TPD 11.856 2.364

FS_BMD Before TPD 1.237 0.245 0.29% 0.895

After TPD 1.241 0.247

FS_CSA Before TPD 3.801 0.921 0.59% 0.753

After TPD 3.823 0.927

FS_CSMI Before TPD 4.239 1.480 0.33% 0.01�

After TPD 4.253 1.546

FS_WIDTH Before TPD 3.210 0.281 0.28% 0.506

After TPD 3.219 0.280

FS_SECT_MOD Before TPD 2.447 0.919 -0.98% 0.795

After TPD 2.423 0.764

FS_BR˚ Before TPD 3.629 1.322 2.91% 0.650

After TPD 3.734 0.981

SHAFT_NECK_ANGLE Before TPD 131.021 5.185 -0.23% 0.709

After TPD 130.721 4.392

SDI Before TPD 8.000 5.000 12.50% 0.341

After TPD 9.000 4.500

HAL Before TPD 110.500 11.085 0.45% 0.611

After TPD 111.000 10.806

BMD Before TPD 0.736 0.172 20.04% <0.001�

After TPD 0.884 0.194

TBS˚ Before TPD 1.076 0.118 11.87% 0.019�

After TPD 1.204 0.182

(Continued)
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interactions of variables in living systems of the real world is completely lost. Auto-Cm system,

a fourth generation ANN, arises just to overcome these limitations. Auto-CM has been applied

in different medical contexts with interesting results demonstrating the ANNs’ usefulness in

easily “untangle the ball of yarn” of complex systems characterized by a lot of variables with

different significance [34–38]. In our population, we separately analyzed the maps obtained

before and after the treatment of TPD. The analysis clearly highlights a complex relationship

between bone quantity and bone quality parameters, with high adaptive weight among the

connections. When comparing pre- and post-treatment data in Tab. 1, we observe low abso-

lute variations of bone geometry parameters’ values, between 1 and 2%, but a noteable modifi-

cation of the connection maps in ANNs. In particular, in the pre-therapy map the variables are

divided into three leaves connected by two central hubs (Fig 1). They are HAL, indicating the

length of femoral neck, proportionally related to fracture risk, and FS_BMD. In the post-ther-

apy map (Fig 2) there is a change of the connections: FS_BMD migrates from central hub to

periphery and leaves its position to NN_SECT_MOD, which is an index of resistance to com-

pressive and flexural loads. This finding confirms the data of Stewart et al. and Jiang et al.

[51,52], which demonstrated a positive effect of TPD on bone strength with an increase of

CSA, that indicates a characteristic similar to SECT_MOD. Our data join to those described in

the few papers published regarding this item in humans [30,32], confirming the known effect

of TPD on the geometrical and structural bone parameters observed in animals [51,52]. Thus,

ANNs maps’ interconnections after TPD therapy change, with the grouping around the hub

CSMI, expression of increase in resistance to compressive loads, while in pre-treatment the

variables are more spread out.

Despite BSI did not modify its relationship with the other variables, it remains the index

that shows the greatest percentage of variation (about 14%), suggesting a significant ameliora-

tion of bone strength. This might be due to the presence of lots of variables related to femur

and just a few related to lumbar spine, that could explain an easy grow of the network affecting

the same region and a different location on the map of lumbar variables.

Considering our four models, namely PreR, PostR, PreNR and PostNR,in the networks

concerning the responders (Fig 3A and 3B) there is a high number of connections in the

MRG: PreR shows 9 hubs and 22 connections, whereas PostR 10 hubs and 33 connections.

This increase in the number of connections indicates an increase in the complexity of the sys-

tem. In fact, there is an improvement of 50% of connections and 11% of related hubs, and an

inclusion of the parameters referring to bone geometry not included in the PreR map

(NN_CSMI and NN_SECT_MOD, Fig 3B). In constructions’ science this is considered an

increase of the resistance of the system (building resistance to collapse) [53].

A significant difference also exists comparing PreNR and PostNR (Fig 4A and 4B), because

connections in the map increase significantly (400%), from 2 to 10, and there is a 133%

increase in hubs, namely from 3 to 7. This indicates a marked gain in complexity after the

treatment with TPD, including the cortical resistance parameters at all the considered femoral

regions (Fig 4B).

Table 2. (Continued)

Mean/median SD/IQR Variation % p-value

BSI˚ Before TPD 2.467 0.748 -25.46% 0.001�

After TPD 1.839 0.442

˚ = non-parametric distribution, with values presented as median with interquartile range (IQR) and compared with Wilcoxon signed rank test

� = statistically significant difference (p<0.05).

https://doi.org/10.1371/journal.pone.0229820.t002
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Table 3. SDI and DXA parameters of the “non-responders” (26 patients; 21 females and 5 males) before and after TPD therapy.

Mean/median SD/IQR Variation % p-value

NN_BMD Before TPD 0.758 0.114 0.67% 0.661

After TPD 0.763 0.116

NN_CSA Before TPD 2.345 0.428 -0.38% 0.775

After TPD 2.336 0.417

NN_CSMI˚ Before TPD 2.100 0.868 -3.21% 0.182

After TPD 2.032 0.856

NN_WIDTH Before TPD 3.255 0.309 -0.89% 0.327

After TPD 3.226 0.321

NN_SECT_MOD Before TPD 1.197 0.325 -0.95% 0.549

After TPD 1.185 0.320

NN_BR˚ Before TPD 12.763 3.969 -3.77% 0.131

After TPD 12.281 3.523

IT_BMD Before TPD 0.769 0.150 -0.59% 0.721

After TPD 0.765 0.162

IT_CSA Before TPD 4.133 0.993 -0.94% 0.567

After TPD 4.094 1.009

IT_CSMI˚ Before TPD 12.475 5.363 -4.43% 0.124

After TPD 11.923 5.461

IT_WIDTH Before TPD 5.629 0.577 -0.10% 0.933

After TPD 5.624 0.591

IT_SECT_MOD˚ Before TPD 3.490 1.256 -4.99% 0.066

After TPD 3.316 1.277

IT_BR Before TPD 10.553 2.421 2.04% 0.310

After TPD 10.768 2.794

FS_BMD Before TPD 1.256 0.216 -3.74% 0.002�

After TPD 1.209 0.199

FS_CSA Before TPD 3.595 0.713 -3.49% <0.01�

After TPD 3.470 0.681

FS_CSMI˚ Before TPD 3.374 1.289 -9.02% 0.03�

After TPD 3.070 1.264

FS_WIDTH Before TPD 3.004 0.238 0.26% 0.608

After TPD 3.012 0.266

FS_SECT_MOD˚ Before TPD 2.171 0.715 -9.94% <0.01�

After TPD 1.955 0.742

FS_BR˚ Before TPD 3.529 1.521 -0.36% 0.007�

After TPD 3.516 1.452

SHAFT_NECK_ANGLE Before TPD 127.750 4.833 0.52% 0.358

After TPD 128.415 5.436

SDI˚ Before TPD 7.500 6.500 13.33% 0.109

After TPD 8.500 6.250

HAL Before TPD 106.269 10.034 0.25% 0.560

After TPD 106.538 10.033

BMD Before TPD 0.750 0.128 2.19% 0.077

After TPD 0.767 0.134

TBS˚ Before TPD 1.156 0.161 -0.04% 0.404

After TPD 1.156 0.158

(Continued)
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Comparing the PreNR group’s results with those of the PreR group, we noted 91% less con-

nections and 67% less hubs interconnected in the PreNR group (2 connections and 3 hubs in

the PreNR and 22 connections and 9 hubs in the PreR). Comparing PostNR with PostR there

are 70% less connections and 30% less interconnected nodes. So, “non-responders” have less

interconnections than “responders”, both before and after drug therapy. An ANNs map with

few connections seems to reflect a lower effect of TPD therapy, as indicated in literature [21].

This study points out the non-secondary role of DXA derived bone geometry parameters

that are worth of a specific insight for their importance in identifying patients who are respon-

sive or not to therapy. Another interesting finding is the reduction of BSI after TPD therapy,

that suggests an increasing of bone strength. Thus, BSI appears to be a sensitive index of TPD

effect, because it ameliorates even in the patients that do not present the expected relevant

increase of BMD or of other DXA quality parameters. Finally, this study highlights the utility

of the ANNs in the study of an item constituted by plenty of variables of different biological

significance.

Limitation of this work is the not great number of cases studied, that suggests the need to

extend this type of analysis to a larger group of patients. Another limitation of the study may

be the lack of familiarity in the use of this new method of analysis which, however, is the basis

of artificial intelligence which will increasingly tend to condition scientific activities as well.

Two conclusions arise from this study: In primis, TPD treatment appears to ameliorate not

only bone quantity (BMD), but also bone texture and bone strain. Bone quality parameters

(TBS, BSI, HSA), easily achieved by standard DXA scans, appear to be relevant in predicting

the pharmacological response and are worthwhile of a greater consideration in clinical

Table 3. (Continued)

Mean/median SD/IQR Variation % p-value

BSI Before TPD 2.413 0.668 -6.57% <0.01�

After TPD 2.255 0.657

˚ = non-parametric distribution, with values presented as median with interquartile range (IQR) and compared with Wilcoxon signed rank test

� = statistically significant difference (p<0.05)

https://doi.org/10.1371/journal.pone.0229820.t003

Fig 1. Semantic map showing the relations between the investigated anagraphic, anthropometric, densitometric,

biochemical and clinical parameters in the whole population before treatment.

https://doi.org/10.1371/journal.pone.0229820.g001
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Fig 2. Semantic map showing the relations between the investigated anagraphic, anthropometric, densitometric,

biochemical and clinical parameters in the whole population after treatment.

https://doi.org/10.1371/journal.pone.0229820.g002

Fig 3. Semantic map showing the relations between the investigated anagraphic, anthropometric, densitometric, biochemical and clinical

parameters in the “responders” before treatment (a) and after treatment (b).

https://doi.org/10.1371/journal.pone.0229820.g003

Fig 4. Semantic map showing the relations between the investigated anagraphic, anthropometric, densitometric, biochemical and clinical

parameters in the “non-responders” before treatment (a) and after treatment (b).

https://doi.org/10.1371/journal.pone.0229820.g004
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practice. Secondly, ANNs proves itself to be useful in understanding the relations between var-

iables of complex systems as those of multifactorial chronic diseases.
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