3,108 research outputs found

    Low-thrust solar electric propulsion navigation simulation program

    Get PDF
    An interplanetary low-thrust, solar electric propulsion mission simulation program suitable for navigation studies is presented. The mathematical models for trajectory simulation, error compensation, and tracking motion are described. The languages, input-output procedures, and subroutines are included

    Optimal control of linear time delay systems

    Get PDF
    Obtaining optimal control for linear time varying system with time dela

    Six-body Light-Front Tamm-Dancoff approximation and wave functions for the massive Schwinger model

    Full text link
    The spectrum of the massive Schwinger model in the strong coupling region is obtained by using the light-front Tamm-Dancoff (LFTD) approximation up to including six-body states. We numerically confirm that the two-meson bound state has a negligibly small six-body component. Emphasis is on the usefulness of the information about states (wave functions). It is used for identifying the three-meson bound state among the states below the three-meson threshold. We also show that the two-meson bound state is well described by the wave function of the relative motion.Comment: 19 pages, RevTeX, 7 figures are available upon request; Minor errors have been corrected; Final version to appear in Phys.Rev.

    Calculation of production and decay of radioisotopes for future irradiation experiments and ion beam facilities

    Get PDF
    Abstract.: The design of future radioactive ion beam (RIB) facilites requires the forecast of radio isotope inventory after irradiation. At CERN - ISOLDE, we developed a software that estimates the activity of irradiated materials as a function of time dedicated to radioactive waste management. This tool can also be used for licensing procedures, planning of irradiation experiments and the estimation of yield

    Field Test for Repellency of Cedarwood Oil and Cedrol to Little Fire Ants

    Get PDF
    Eastern redcedars (Juniperus virginiana L.) are an abundant renew- able resource and represent a potential source of valuable natural products that may serve as natural biocides. The aromatic wood can be extracted to obtain cedarwood oil (CWO) and critical carbon dioxide (CO2) extraction of eastern redcedars gives both high yields and high quality CWO. In this study, CO2-derived CWO and cedrol, the most abundant component of CWO, were field-tested for repellency against the little fire ant (LFA), Wasmannia auropunctata Roger, in a Hawaiian macadamia orchard. Field tests were conducted using chopsticks baited with peanut-butter placed in established LFA trails on macadamia tree trunks and branches. The chopsticks and any ants present were collected after ca. 24 hours and the number of ants determined by visual counting. Four treatments were compared: Hexane only control; mineral oil; CWO; and cedrol. Control chopsticks and chopsticks treated with mineral oil had very high numbers of ants and were statistically equivalent. The CWO-treated chopsticks had significantly fewer LFAs than all the other treatments. Chopsticks treated with cedrol had fewer ants than the control chopsticks but more than the chopsticks treated with CWO. This research suggests that CWO extracts from J. virginianna may provide a renewable source of a natural ant repellent and could help manage this invasive pest

    Simulation of 3D Porous Media Flows with Application to Polymer Electrolyte Fuel Cells

    Get PDF
    A 3D lattice Boltzmann (LB) model with twenty-seven discrete velocities is presented and used for the simulation of three-dimensional porous media flows. Its accuracy in combination with the half-way bounce back boundary condition is assessed. Characteristic properties of the gas diffusion layers that are used in polymer electrolyte fuel cells can be determined with this model. Simulation in samples that have been obtained via X-ray tomographic microscopy, allows to estimate the values of permeability and relative effective diffusivity. Furthermore, the computational LB results are compared with the results of other numerical tools, as well as with experimental value

    The Vacuum in Light-Cone Field Theory

    Get PDF
    This is an overview of the problem of the vacuum in light-cone field theory, stressing its close connection to other puzzles regarding light-cone quantization. I explain the sense in which the light-cone vacuum is ``trivial,'' and describe a way of setting up a quantum field theory on null planes so that it is equivalent to the usual equal-time formulation. This construction is quite helpful in resolving the puzzling aspects of the light-cone formalism. It furthermore allows the extraction of effective Hamiltonians that incorporate vacuum physics, but that act in a Hilbert space in which the vacuum state is simple. The discussion is fairly informal, and focuses mainly on the conceptual issues. [Talk presented at {\sc Orbis Scientiae 1996}, Miami Beach, FL, January 25--28, 1996. To appear in the proceedings.]Comment: 20 pages, RevTeX, 4 Postscript figures. Minor typos correcte

    Renormal-order improvement of the Schwinger mass

    Get PDF
    The massive Schwinger model may be analysed by a perturbation expansion in the fermion mass. However, the results of this mass perturbation theory are sensible only for sufficiently small fermion mass. By performing a renormal-ordering, we arrive at a chiral perturbation expansion where the expansion parameter remains small even for large fermion mass. We use this renormal-ordered chiral perturbation theory for a computation of the Schwinger mass and compare our results with lattice computations.Comment: Latex file, 13 pages, 3 figures, needed macro: psbox.te

    Series Expansions for the Massive Schwinger Model in Hamiltonian lattice theory

    Get PDF
    It is shown that detailed and accurate information about the mass spectrum of the massive Schwinger model can be obtained using the technique of strong-coupling series expansions. Extended strong-coupling series for the energy eigenvalues are calculated, and extrapolated to the continuum limit by means of integrated differential approximants, which are matched onto a weak-coupling expansion. The numerical estimates are compared with exact results, and with finite-lattice results calculated for an equivalent lattice spin model with long-range interactions. Both the heavy fermion and the light fermion limits of the model are explored in some detail.Comment: RevTeX, 10 figures, add one more referenc

    Dynamics of the Light-Cone Zero Modes: Theta Vacuum of the Massive Schwinger Model

    Full text link
    The massive Schwinger model is quantized on the light cone with great care on the bosonic zero modes by putting the system in a finite (light-cone) spatial box. The zero mode of A−A_{-} survives Dirac's procedure for the constrained system as a dynamical degree of freedom. After regularization and quantization, we show that the physical space condition is consistently imposed and relates the fermion Fock states to the zero mode of the gauge field. The vacuum is obtained by solving a Schr\"odinger equation in a periodic potential, so that the theta is understood as the Bloch momentum. We also construct a one-meson state in the fermion-antifermion sector and obtained the Schr\"odinger equation for it.Comment: 23 pages, RevTex, no figure
    • 

    corecore