610 research outputs found

    Gate tunability of stray-field-induced electron spin precession in a GaAs/InGaAs quantum well below an interdigitated magnetized Fe grating

    Full text link
    Time-resolved Faraday rotation is used to measure the coherent electron spin precession in a GaAs/InGaAs quantum well below an interdigitated magnetized Fe grating. We show that the electron spin precession frequency can be modified by applying a gate voltage of opposite polarity to neighboring bars. A tunability of the precession frequency of 0.5 GHz/V has been observed. Modulating the gate potential with a gigahertz frequency allows the electron spin precession to be controlled on a nanosecond timescale

    Detection and Mapping of Quantitative Trait Loci that Determine Responsiveness

    Get PDF
    Exposure to 70% N2O evokes a robust antinociceptive effect in C57BL/6 (B6) but not in DBA/2 (D2) inbred mice. This study was conducted to identify quantitative trait loci (QTL) in the mouse genome that might determine responsiveness to N2O. Offspring from the F2 generation bred from B6 and D2 progenitors exhibited a broad range of responsiveness to N2O antinociception as determined by the acetic acid-induced abdominal constriction test. QTL analysis was then used to dissect this continuous trait distribution into component loci, and to map them to broad chromosomal regions. To this end, 24 spleens were collected from each of the following four groups: male and female F2 mice responding to 70% N2O in oxygen with 100% response (high-responders); and male and female F2 mice responding with 0% response (low-responders). Genomic DNA was extracted from the spleens and genotyped with simple sequence length polymorphism MapPairs markers. Findings were combined with findings from the earlier QTL analysis from BXD recombinant inbred mice [Brain Res 725 (1996) 23]. Combined results revealed two significant QTL that influence responsiveness to nitrous oxide on proximal chromosome 2 and distal chromosome 5, and one suggestive QTL on midchromosome 18. The chromosome 2 QTL was evident only in males. A significant interaction was found between a locus on chromosome 6 and another on chromosome 13 with a substantial effect on N2O antinociception

    Density dependence of microwave induced magneto-resistance oscillations in a two-dimensional electron gas

    Full text link
    We have measured the magneto-resistance of a two-dimensional electron gas (2DEG) under continuous microwave irradiation as a function of electron density and mobility tuned with a metallic top-gate. In the entire range of density and mobility we have investigated, we observe microwave induced oscillations of large amplitude that are B-periodic. These B-periodic oscillations are reminiscent of the ones reported by Kukushkin \textit{et al}[1] and which were attributed to the presence of edge-magneto-plasmons. We have found that the B-periodicity does not increase linearly with the density in our sample but shows a plateau in the range (2.4-3) 10^{11}\rm cm^{-2} $. In this regime, the phase of the B-periodic oscillations is found to shift continuously by two periods.Comment: 5 pages, 4 figure

    Optimized stray-field-induced enhancement of the electron spin precession by buried Fe gates

    Full text link
    The magnetic stray field from Fe gates is used to modify the spin precession frequency of InGaAs/GaAs quantum-well electrons in an external magnetic field. By using an etching process to position the gates directly in the plane of the quantum well, the stray-field influence on the spin precession increases significantly compared with results from previous studies with top-gated structures. In line with numerical simulations, the stray-field-induced precession frequency increases as the gap between the ferromagnetic gates is reduced. The inhomogeneous stray field leads to additional spin dephasing.Comment: 4 pages, 2 figure

    Two-subband quantum Hall effect in parabolic quantum wells

    Full text link
    The low-temperature magnetoresistance of parabolic quantum wells displays pronounced minima between integer filling factors. Concomitantly the Hall effect exhibits overshoots and plateau-like features next to well-defined ordinary quantum Hall plateaus. These effects set in with the occupation of the second subband. We discuss our observations in the context of single-particle Landau fan charts of a two-subband system empirically extended by a density dependent subband separation and an enhanced spin-splitting g*.Comment: 5 pages, submitte

    Day of Archaeology 2011–2017: Global Community, Public Engagement, and Digital Practice.

    Get PDF
    The Day of Archaeology (http://www.dayofarchaeology.com) was a volunteer-led international archaeological blogging event that ran from 2011 to 2017. The project asked people who define themselves as archaeologists to submit one or more blog posts about their working day on a chosen day in June or July. This article explores the history of the Day of Archaeology project and the practicalities of running a large-scale collaborative blogging project, before examining some of the topics covered in the posts. An assessment of the impact of the project follows. Overall, we hope in this work to answer some of the basic questions regarding this type of collaborative, online, global engagement – what we did, who we reached, what they talked about – and also to provide some insights for any other similar initiatives that may follow us in the future

    Collapse of ρxx\rho_{xx} ringlike structures in 2DEGs under tilted magnetic fields

    Full text link
    In the quantum Hall regime, the longitudinal resistivity ρxx\rho_{xx} plotted as a density--magnetic-field (n2DBn_{2D}-B) diagram displays ringlike structures due to the crossings of two sets of spin split Landau levels from different subbands [e.g., Zhang \textit{et al.}, Phys. Rev. Lett. \textbf{95}, 216801 (2005)]. For tilted magnetic fields, some of these ringlike structures "shrink" as the tilt angle is increased and fully collapse at θc6\theta_c \approx 6^\circ. Here we theoretically investigate the topology of these structures via a non-interacting model for the 2DEG. We account for the inter Landau-level coupling induced by the tilted magnetic field via perturbation theory. This coupling results in anti-crossings of Landau levels with parallel spins. With the new energy spectrum, we calculate the corresponding n2DBn_{2D}-B diagram of the density of states (DOS) near the Fermi level. We argue that the DOS displays the same topology as ρxx\rho_{xx} in the n2DBn_{2D}-B diagram. For the ring with filling factor ν=4\nu=4, we find that the anti-crossings make it shrink for increasing tilt angles and collapse at a large enough angle. Using effective parameters to fit the θ=0\theta = 0^\circ data, we find a collapsing angle θc3.6\theta_c \approx 3.6^\circ. Despite this factor-of-two discrepancy with the experimental data, our model captures the essential mechanism underlying the ring collapse.Comment: 3 pages, 2 figures; Proceedings of the PASPS V Conference Held in August 2008 in Foz do Igua\c{c}u, Brazi

    Antibody signatures in patients with histopathologically defined multiple sclerosis patterns

    Get PDF
    Early active multiple sclerosis (MS) lesions can be classified histologically into three main immunopathological patterns of demyelination (patterns I-III), which suggest pathogenic heterogeneity and may predict therapy response. Patterns I and II show signs of immune-mediated demyelination, but only pattern II is associated with antibody/complement deposition. In pattern III lesions, which include Baló's concentric sclerosis, primary oligodendrocyte damage was proposed. Serum antibody reactivities could reflect disease pathogenesis and thus distinguish histopathologically defined MS patterns. We established a customized microarray with more than 700 peptides that represent human and viral antigens potentially relevant for inflammatory demyelinating CNS diseases, and tested sera from 66 patients (pattern I n = 12; II n = 29; III n = 25, including 8 with Baló's), healthy controls, patients with Sjögren's syndrome and stroke patients. Cell-based assays were performed for aquaporin 1 (AQP1) and AQP4 antibody detection. No single peptide showed differential binding among study cohorts. Because antibodies can react with different peptides from one protein, we also analyzed groups of peptides. Patients with pattern II showed significantly higher reactivities to Nogo-A peptides as compared to patterns I (p = 0.02) and III (p = 0.02). Pattern III patients showed higher reactivities to AQP1 (compared to pattern I p = 0.002, pattern II p = 0.001) and varicella zoster virus (VZV, compared to pattern II p = 0.05). In patients with Baló's, AQP1 reactivity was also significantly higher compared to patients without Baló's (p = 0.04), and the former revealed distinct antibody signatures. Histologically, Baló's patients showed loss of AQP1 and AQP4 in demyelinating lesions, but no antibodies binding conformational AQP1 or AQP4 were detected. In summary, higher reactivities to Nogo-A peptides in pattern II patients could be relevant for enhanced axonal repair and remyelination. Higher reactivities to AQP1 peptides in pattern III patients and its subgroup of Baló's patients possibly reflect astrocytic damage. Finally, latent VZV infection may cause peripheral immune activation
    corecore