119 research outputs found

    Fabry Disease – Current Treatment and New Drug Development

    Get PDF
    Fabry disease is a rare inherited lysosomal storage disorder caused by a partial or complete deficiency of α-galactosidase A (GLA), resulting in the storage of excess cellular glycosphingolipids. Enzyme replacement therapy is available for the treatment of Fabry disease, but it is a costly, intravenous treatment. Alternative therapeutic approaches, including small molecule chaperone therapy, are currently being explored. High throughput screening (HTS) technologies can be utilized to discover other small molecule compounds, including non-inhibitory chaperones, enzyme activators, molecules that reduce GLA substrate, and molecules that activate GLA gene promoters. This review outlines the current therapeutic approaches, emerging treatment strategies, and the process of drug discovery and development for Fabry disease

    A characterization of Gaucher iPS-derived astrocytes: Potential implications for Parkinson\u27s disease

    Get PDF
    While astrocytes, the most abundant cells found in the brain, have many diverse functions, their role in the lysosomal storage disorder Gaucher disease (GD) has not been explored. GD, resulting from the inherited deficiency of the enzyme glucocerebrosidase and subsequent accumulation of glucosylceramide and its acylated derivative glucosylsphingosine, has both non-neuronopathic (GD1) and neuronopathic forms (GD2 and 3). Furthermore, mutations in GBA1, the gene mutated in GD, are an important risk factor for Parkinson\u27s disease (PD). To elucidate the role of astrocytes in the disease pathogenesis, we generated iAstrocytes from induced pluripotent stem cells made from fibroblasts taken from controls and patients with GD1, with and without PD. We also made iAstrocytes from an infant with GD2, the most severe and progressive form, manifesting in infancy. Gaucher iAstrocytes appropriately showed deficient glucocerebrosidase activity and levels and substrate accumulation. These cells exhibited varying degrees of astrogliosis, Glial Fibrillary Acidic Protein (GFAP) up-regulation and cellular proliferation, depending on the level of residual glucocerebrosidase activity. Glutamte uptake assays demonstrated that the cells were functionally active, although the glutamine transporter EEAT2 was upregulated and EEAT1 downregulated in the GD2 samples. GD2 iAstrocytes were morphologically different, with severe cytoskeletal hypertrophy, overlapping of astrocyte processes, pronounced up-regulation of GFAP and S100β, and significant astrocyte proliferation, recapitulating the neuropathology observed in patients with GD2. Although astrocytes do not express α-synuclein, when the iAstrocytes were co-cultured with dopaminergic neurons generated from the same iPSC lines, excessive α-synuclein released from neurons was endocytosed by astrocytes, translocating into lysosomes. Levels of aggregated α-synuclein increased significantly when cells were treated with monomeric or fibrillar α-synuclein. GD1-PD and GD2 iAstrocytes also exhibited impaired Cathepsin D activity, leading to further α-synuclein accumulation. Cytokine and chemokine profiling of the iAstrocytes demonstrated an inflammatory response. Thus, in patients with GBA1-associated parkinsonism, astrocytes appear to play a role in α-synuclein accumulation and processing, contributing to neuroinflammation

    High Throughput Screening for Inhibitors of Alpha-Galactosidase

    Get PDF
    Fabry disease is a rare X-linked lysosomal storage disorder caused by a deficiency in α-galactosidase A (GLA), which catalyzes the hydrolysis of terminal α-galactosyl groups from glycosphingolipids, such as globotriaosylceramide (Gb3). Many of the mutations in the GLA gene are missense alterations that cause misfolding, decreased stability, and/or mistrafficking of this protein. Small molecule compounds that correct the misfolding and mistrafficking, or activate the mutant enzyme, may be useful in the treatment of Fabry disease. We have screened a library of approximately 230,000 compounds using preparations of human recombinant protein and purified coffee bean enzyme in an effort to find activators and inhibitors of this enzyme. Lansoprazole was identified as a small molecule inhibitor of GLA derived from coffee beans (IC50 = 6.4 μM), but no inhibitors or activators were identified for the human enzyme. The screening results indicate that human GLA is a difficult target for small molecule inhibition or activation

    Bilateral symmetrical cortical osteolytic lesions in two patients with Gaucher disease

    Get PDF
    Gaucher disease (GD) is an autosomal recessive lysosomal storage disorder characterized by the reduced or absent activity of glucocerebrosidase. The disease is split into three types. Type 3, or chronic neuronopathic GD, manifests with heterogeneous clinical presentations. Skeletal manifestations of GD can include abnormal bone remodeling resulting in the characteristic Erlenmeyer flask deformities, painful bone crises, osteopenia, and an increased frequency of fractures. Osteolytic lesions can also occur but are rare and tend to be large, expanding intramedullary lesions with cortical thinning. We present two adolescent patients with type 3 GD who developed bilateral symmetrical cortical osteolytic lesions. The lesions in both cases demonstrate predominant cortical scalloping with fairly indolent growth. Neither patient manifests some of the more common bony manifestations of GD—bone crises or osteonecrosis. These atypical and unique skeletal findings in two unrelated probands with type 3 GD further expand the extent of phenotypic variation encountered in this single gene disorder

    Gaucher Disease Glucocerebrosidase and α-Synuclein Form a Bidirectional Pathogenic Loop in Synucleinopathies

    Get PDF
    SummaryParkinson's disease (PD), an adult neurodegenerative disorder, has been clinically linked to the lysosomal storage disorder Gaucher disease (GD), but the mechanistic connection is not known. Here, we show that functional loss of GD-linked glucocerebrosidase (GCase) in primary cultures or human iPS neurons compromises lysosomal protein degradation, causes accumulation of α-synuclein (α-syn), and results in neurotoxicity through aggregation-dependent mechanisms. Glucosylceramide (GlcCer), the GCase substrate, directly influenced amyloid formation of purified α-syn by stabilizing soluble oligomeric intermediates. We further demonstrate that α-syn inhibits the lysosomal activity of normal GCase in neurons and idiopathic PD brain, suggesting that GCase depletion contributes to the pathogenesis of sporadic synucleinopathies. These findings suggest that the bidirectional effect of α-syn and GCase forms a positive feedback loop that may lead to a self-propagating disease. Therefore, improved targeting of GCase to lysosomes may represent a specific therapeutic approach for PD and other synucleinopathies

    A biochemical and ultrastructural evaluation of the type 2 Gaucher mouse

    Get PDF
    Gaucher mice, created by targeted disruption of the glucocerebrosidase gene, are totally deficient in glucocerebrosidase and have a rapidly deteriorating clinical course analogous to the most severely affected type 2 human patients. An ultrastructural study of tissues from these mice revealed glucocerebroside accumulation in bone marrow, liver, spleen, and brain. This glycolipid had a characteristic elongated tubular structure and was contained in lysosomes, as demonstrated by colocalization with both ingested carbon particles and cathepsin D. In the central nervous system (CNS), glucocerebroside was diffusely stored in microglia cells and in brainstem and spinal cord neurons, but not in neurons of the cerebellum or cerebral cortex. This rostralcaudal pattern of neuronal lipid storage in these Gaucher mice replicates the pattern seen in type 2 human Gaucher patients and clearly demonstrates that glycosphingolipid catabolism and/or accumulation varies within different brain regions. Surprisingly, the cellular pathology of tissue from these Gaucher mice was relatively mild, and suggests that the early and rapid demise of both Gaucher mice and severely affected type 2 human neonates may be the result of both a neurotoxic metabolite, such as glucosylsphingosine, and other factors, such as skin water barrier dysfunction secondary to the absence of glucocerebrosidase activity

    Functional and genetic characterization of the non-lysosomal glucosylceramidase 2 as a modifier for Gaucher disease

    Get PDF
    Background: Gaucher disease (GD) is the most common inherited lysosomal storage disorder in humans, caused by mutations in the gene encoding the lysosomal enzyme glucocerebrosidase (GBA1). GD is clinically heterogeneous and although the type of GBA1 mutation plays a role in determining the type of GD, it does not explain the clinical variability seen among patients. Cumulative evidence from recent studies suggests that GBA2 could play a role in the pathogenesis of GD and potentially interacts with GBA1. Methods: We used a framework of functional and genetic approaches in order to further characterize a potential role of GBA2 in GD. Glucosylceramide (GlcCer) levels in spleen, liver and brain of GBA2-deficient mice and mRNA and protein expression of GBA2 in GBA1-deficient murine fibroblasts were analyzed. Furthermore we crossed GBA2-deficient mice with conditional Gba1 knockout mice in order to quantify the interaction between GBA1 and GBA2. Finally, a genetic approach was used to test whether genetic variation in GBA2 is associated with GD and/or acts as a modifier in Gaucher patients. We tested 22 SNPs in the GBA2 and GBA1 genes in 98 type 1 and 60 type 2/3 Gaucher patients for single-and multi-marker association with GD. Results: We found a significant accumulation of GlcCer compared to wild-type controls in all three organs studied. In addition, a significant increase of Gba2-protein and Gba2-mRNA levels in GBA1-deficient murine fibroblasts was observed. GlcCer levels in the spleen from Gba1/Gba2 knockout mice were much higher than the sum of the single knockouts, indicating a cross-talk between the two glucosylceramidases and suggesting a partially compensation of the loss of one enzyme by the other. In the genetic approach, no significant association with severity of GD was found for SNPs at the GBA2 locus. However, in the multi-marker analyses a significant result was detected for p.L444P (GBA1) and rs4878628 (GBA2), using a model that does not take marginal effects into account. Conclusions: All together our observations make GBA2 a likely candidate to be involved in GD etiology. Furthermore, they point to GBA2 as a plausible modifier for GBA1 in patients with GD

    High Throughput Screening for Small Molecule Therapy for Gaucher Disease Using Patient Tissue as the Source of Mutant Glucocerebrosidase

    Get PDF
    Gaucher disease (GD), the most common lysosomal storage disorder, results from the inherited deficiency of the lysosomal enzyme glucocerebrosidase (GCase). Previously, wildtype GCase was used for high throughput screening (HTS) of large collections of compounds to identify small molecule chaperones that could be developed as new therapies for GD. However, the compounds identified from HTS usually showed reduced potency later in confirmatory cell-based assays. An alternate strategy is to perform HTS on mutant enzyme to identify different lead compounds, including those enhancing mutant enzyme activities. We developed a new screening assay using enzyme extract prepared from the spleen of a patient with Gaucher disease with genotype N370S/N370S. In tissue extracts, GCase is in a more native physiological environment, and is present with the native activator saposin C and other potential cofactors. Using this assay, we screened a library of 250,000 compounds and identified novel modulators of mutant GCase including 14 new lead inhibitors and 30 lead activators. The activities of some of the primary hits were confirmed in subsequent cell-based assays using patient-derived fibroblasts. These results suggest that primary screening assays using enzyme extracted from tissues is an alternative approach to identify high quality, physiologically relevant lead compounds for drug development

    Polygenic Parkinson's Disease Genetic Risk Score as Risk Modifier of Parkinsonism in Gaucher Disease

    Get PDF
    Background: Biallelic pathogenic variants in GBA1 are the cause of Gaucher disease (GD) type 1 (GD1), a lysosomal storage disorder resulting from deficient glucocerebrosidase. Heterozygous GBA1 variants are also a common genetic risk factor for Parkinson's disease (PD). GD manifests with considerable clinical heterogeneity and is also associated with an increased risk for PD. Objective: The objective of this study was to investigate the contribution of PD risk variants to risk for PD in patients with GD1. Methods: We studied 225 patients with GD1, including 199 without PD and 26 with PD. All cases were genotyped, and the genetic data were imputed using common pipelines. Results: On average, patients with GD1 with PD have a significantly higher PD genetic risk score than those without PD (P = 0.021). Conclusions: Our results indicate that variants included in the PD genetic risk score were more frequent in patients with GD1 who developed PD, suggesting that common risk variants may affect underlying biological pathways. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA
    • …
    corecore